

Beyond Technology: Governance, Policy and Equity Roadmap for Sustainable Urban Water Security Worldwide

Hafiz Abdul Wajid^{1,*}, Muhammad Abid^{2,3}, and Zaineb Abid⁴

¹Department of Electrical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia

²Department of Mechanical Engineering, COMSATS University Islamabad, Wah Campus, G T Road, Wah Cantt, Pakistan

³Interdisciplinary Research Center, COMSATS University Islamabad, Wah Campus, G T Road, Wah Cantt, Pakistan

⁴Institute for Sustainable Resources, University College London, London, United Kingdom

Email: hawajid@iu.edu.sa (H.A.W.); drabid@ciitwah.edu.pk (M.A.); zaineb.abid.24@ucl.ac.uk (Z.A.)

*Corresponding author

Manuscript received September 9, 2025; revised October 14, 2025; accepted December 9, 2025; published February 5, 2026

Abstract—Cities worldwide are using smart technologies such as sensors, Artificial Intelligence (AI), Internet of Things (IoT) to address growing water demand and shortages. This study analyzes 14 urban water security initiative implemented during 2014 to 2024 in the cities of different regions globally including Singapore, Tokyo, Las Vegas, Cape Town, Copenhagen, Israel, Bengaluru, Lima, Melbourne, Mexico City, California, Michigan and Chennai. Selected initiatives are classified into seven focus dimensions to analyze their success or failure. Flint and Chennai initiatives conclude that in case of rigid policies or ignored communities the use of technology alone often fails. Initiatives taken by Singapore and Tokyo are observed successful and impactful as they utilized modern technology with a strong support from the government. Overall success of the urban water security initiatives is concluded based on the implementation of the technology that fits the local context, supportive and adaptable policies and strong commitment to fairness. Findings of this study provide a roadmap for urban water security worldwide by integrating governance, policies and equity with modern technology. This study directly addresses and contributes to two Sustainable Development Goals (SDGs) for water (SDG-6) and sustainable cities (SDG-11).

Keywords—smart water management, water governance, urban water security, equity, climate resilience, sustainable development goals (SDGs), digital water

I. INTRODUCTION

Serious water crisis is affecting the world as nearly 2.3 billion people live in water-stressed regions. This problem is further intensified by climate change and rapid urbanization [1]. Traditional water infrastructure in cities is often unable to withstand such fast-paced pressures. Cities now a days are increasingly opting and using modern technologies such as AI, IoT, blockchain and sensors to significantly handle emerging water related issues. Undoubtedly, the impact of utilizing smart technologies is found significant in reducing substantial amount of water loss and well-documented in literature [2]. Here we mention two real-world success cases of Singapore and Seoul, who achieved promising water efficiency gains using digital twin models and AI [3, 4]. Though studies are found fully focused on addressing technical specifications of these technological tools and their impact, however rare attention is paid to the role of governance, policies, and human factors in their success [5]. This presents a reasonable gap in current research when discussing water security particularly in urban context.

This gap found evident from Las Vegas initiative that reducing water consumption by smart water meters also

requires supportive policies and public education [6]. On the other hand, Cape Town initiative enjoyed huge success as it combined use of technology with strong regulatory framework [7]. Therefore, use of smart technology alone cannot address dire issues of water security faced by cities worldwide. Hence, demands rethinking water security, adopting a holistic approach by focusing on water related governance and policies. For example, the initiative of Flint water crisis resulted in harming the marginalized community simply because of governance failure [8] while the deployment of prepaid meters in Bangalore found successful by considering the local social context [9]. Another initiative of Chennai where drought response worsened water inequity by ignoring both the local context and citizens resulted in failure [10, 11]. Similarly, how well leak detection technologies work depends not only on how advanced they are but also depends on the age of water infrastructure and rules cities follow [12]. Even new ideas like using blockchain for water trading, tested in places such as Australia's Murray-Darling Basin, only work well when the right laws and institutions are already in place [13]. One thing is evident from above considered global initiatives that neglecting governance, policies and local social context require attention to lay off negative impact of technology, particularly found impacting most to developing nations.

In this study such gaps are highlighted by analyzing the 14 already implemented water security initiatives worldwide. Success of urban water initiatives is observed not only in the technology driven solutions, but findings of this study provide a roadmap for urban water security worldwide by integrating governance, policies and equity. Rest of the paper is organized as follows. Section II presents literature review; Section III explains research methodology. Section IV presents results and discussion. Section V presents key lessons learned from 14 selected initiatives. Section VI provides a practical roadmap for urban water security followed by the conclusions given in Section VII.

II. LITERATURE REVIEW

Urbanization poses a great challenge for cities worldwide regarding water security; however, it is important to ensure that each citizen enjoys adequate safe water supply [14]. Factors that can make this possible for cities worldwide are discussed in the following sections.

A. Governance and Policy

Good governance and right policies are the foundation of water security. Hence effective, transparent, and adaptable

governance and policies are essential to create an environment where novel solutions can work and shed impact. Early research has defined water security as a governance problem rather than the technological advancement [15]. Water-Governance involves rules, processes and relevant bodies or organizations that are responsible for managing water to determine who gets water, when and how. Strong and right policies are needed to support good governance to ensure success of water initiatives with desired results and can promote water-saving actions and manage demand [16]. Water security is observed to be ineffective in the developing nations due to poor water governance [17].

B. Social Equity

Equity ensures that water security benefits everyone, whereas the focus only on technology can make existing social inequalities worse [18]. A recent study used maps to show how water security issues are often concentrated in specific, underserved urban regions highlighting the spatial nature of inequality [19]. Failure of Flint case is a famous example of an equity crisis which was caused by poor governance that harmed a vulnerable community [20]. Therefore, measuring success in water security must include metrics for fairness and access for all social groups.

C. Supportive Role of Modern Technology

Technology plays a central role in water management.

Effective technologies like sensors and AI can find water leaks and monitor water quality and can guide humans to be adaptive to these for efficient water use [21, 22]. Mathematical models are observed to be useful, for example for religious practices (such as ablution) to save water by using water aerators and controlling water flow rates of the existing water taps [23]. Similarly, using efficient water fixtures in residential households also helps save substantial amount of water on daily basis [24]. Also, water wastage is prevented by using a voice-activated water dispenser to fill the cup with fixed amount of water designed for densely crowded religious places [25]. These examples show the supportive role of technology, not just being hardware but its interaction with the user to save water. However, these tools can only be effective when supported by a larger, well-governed system [26].

The synthesis of literature review reveals an integrated approach defining water security issues [14, 15], highlighting the importance of governance and policies [16, 17] and role of equity [18–20] along with potential of recent technologies [21–26] for long-term success and impact.

III. MATERIALS AND METHODS

Qualitative method is used for the comparison of 14 implemented urban water security initiatives. Initiatives selection criteria and their analysis methods are described in the following subsections.

Table 1. Dimensional classification of selected urban water initiatives

Strategic Dimension	Initiative / (Year - Location) / Source	Technology / Mechanism Used
Real-Time Monitoring	Digital Twin for Network Management / (Launched 2018-Singapore) / [3]	Digital Twin, IoT Sensors, Real-Time Hydraulic Modelling
	Advanced Acoustic Leak Detection / (Ongoing-Tokyo, Japan) / [12, 27]	Advanced Acoustic Loggers, AI-based Noise Correlation
Behavioral Demand Management	Smart Meter Incentives & Conservation / (Ongoing since 2002-Las Vegas, USA) / [6]	Smart Meters, Public Dashboards, Gamification, Financial Rebates
	Crisis-Driven “Day Zero” Water Restrictions / (2017-2018-Cape Town, South Africa) / [7, 28]	Progressive Tariffs, Strict Quotas (50L/person/day), Public Communication
Circular Systems	Wastewater Heat Recovery for District Heating / (Operational-Copenhagen, Denmark) / [29]	Large-Scale Heat Pumps, SCADA-Optimized Integration
	Nationwide Water Reuse for Agriculture / (Pioneered around 2000-Israel) / [30–32]	Drip Irrigation, Advanced Membrane Technology for Water Reclamation
Equitable and Low-Cost Access	Prepaid Water Meters in Informal Settlements / (Piloted/Trialed-Bengaluru, India) / [33]	Prepaid Water Meters, Digital Payment Systems
	Fog Harvesting Nets for Community Water / (Community driven initiatives-Lima, Peru) / [34]	Fog Harvesting Meshes (Raschel mesh), Gravity-Fed Pipelines
Climate Resilience	AI for Urban Flood Prediction / (In Development/Deployment-Melbourne, Australia) / [35]	AI/Machine Learning Models, Real-time Sensor Data Fusion
	Satellite Monitoring of Aquifer Subsidence / (Study Published 2024-Mexico City, Mexico) / [36]	Satellite InSAR (Interferometric Synthetic Aperture Radar)
Governance and Policy	IoT-Enabled Groundwater Quotas (SGMA) / (Implementation from 2020-California, USA) / [37]	IoT Well Sensors, Remote Sensing, Groundwater Sustainability Plans
	Cybersecurity Mandate for Water Utilities / (U.S. EPA Directive-March 2023-USA) / [38]	Cybersecurity Risk Assessments, Incident Response Plans
Lessons from Failed initiatives	Flint Water Crisis / (2014-2015-Michigan, USA) / [8]	Failure of Corrosion Control (Orthophosphate), Poor Water Quality Testing
	Centralized Crisis Management during Drought / (2018-2019-Chennai, India) / [10]	Centralized Tanker Distribution, Over-reliance on Diminishing Surface Water

A. Initiative Selection Criteria

Initiatives are selected for both the developed and developing countries; initiatives include high-tech solutions like AI, IoT, blockchain and simple systems like fog nets and initiatives are published in reliable sources like official

reports and renowned journals in water category.

B. Analysis Method

Each of the selected initiatives is classified into the following seven focus dimensions (Table 1).

1) Real-Time Monitoring

- 2) Behavioral Demand Management
- 3) Circular Systems
- 4) Equitable and Low-Cost Access
- 5) Climate Resilience
- 6) Governance and Policy
- 7) Lessons from Failures.

Each initiative is studied in detail to identify its success or failure of technologies implemented and the role of governance and policies and implementation potential.

IV. RESULT AND DISCUSSION

Based on the detailed analysis of the 14 urban water initiatives, the successful working of 12 out of 14 initiatives supports the possibility of global movement towards smart water solutions. Whereas the failure of Flint and Chennai initiatives also show that the failure is also common. The subsections below explain these successes and failures in detail with reference to the seven focused dimensions.

A. Real-Time Monitoring

The implementation of innovative monitoring systems is redefining water management specifically in major cities worldwide. Also, these systems are effective particularly predicting and identifying breakdowns. In this regard we consider two modern cities of Singapore and Tokyo. Singapore utilizes digital twin technology, creating a virtual model of its entire water network to simulate scenarios, to identify water leaks and plan for repairs to save water loss also known as non-revenue water as quick as possible [3]. Tokyo uses a dense network of advanced acoustic loggers and AI-driven noise-correlation analysis to monitor leaks achieving remarkably low water leakage rate of approximately 3% [12, 27]. Though both the cities show good success using these modern technologies, their continued success is observed dependent on a strong and ongoing commitment. Tokyo's initiative requires continuous funding to maintain sensors and pay expert staff [27], whereas Singapore initiative highlights high startup cost as a major barrier for other cities worldwide to implement it [3]. In summary, it is evident from above initiatives that real-time monitoring systems are neither simple nor ready-to-use solutions. Rather requires long term commitment for continuous investment even by developed nations. Therefore, resilient water governance is a must to ensure success of real time water monitoring systems.

B. Behavioral Demand Management

Now we discuss role of community behavior for the use of water with technology using two well-known initiatives of Las Vegas and Cape Town. Las Vegas initiative is a prime example which shows how continuous awareness campaigns, rebates to use efficient appliances and smart water pricing help in changing habits and culture of the community to save water. The Southern Nevada Water Authority (SNWA) has successfully achieved approximately 48% drop in water use per capita over two decades demonstrating the power of building positive habits [6]. Another critical example is of city Cape Town who faced a crisis famously known as Day Zero. To handle this crisis, the city government responded quickly with strict, mandatory rules such as water quotas (50L/person/day), high crisis tariffs, and effective communication campaign. This swift action helped in

lowering water demand by more than half averting this disaster [7]. This demonstrates policy guided actions and urgent communication can be highly useful in the case of emergencies. Each model has its strengths and weaknesses. The Las Vegas model depends on continuous funding and no political changes for sustainable success. Although the implementation of strict rules in Cape Town observed effective but ultimately caused public frustration and could not sustain. It is concluded that there is no single solution, e.g. some systems rewards people for saving water building good habits, whereas in the case of an emergency, there will be need to quickly switch to strict and mandatory rules.

C. Circular Systems

Circular water systems are used to build climate resilience. In this regard two key initiatives of Copenhagen and Israel are discussed. Copenhagen initiative focuses on energy and captures waste heat from its wastewater and uses it to heat most of the buildings reducing need for fossil fuels [29]. In contrast, Israel is a world leader in reusing water as it treats and recycles over 90% of its wastewater specifically using in farming primarily delivered via pressurized pipelines and smart drip irrigation systems acquiring drought resilience [30–32]. The implementation of these systems reveals context-specific challenges. Copenhagen's solution requires a high initial capital investment and is only economically viable in dense, urban environments with a demand for heating [29]. While Israel initiative needs massive investment in a separate pipe network along with decades of work to gain public trust for recycled water use. These initiatives prove that circular water solutions are far beyond technology. Their success is determined by good governance, significant investment, and adaptive management to address environmental and social constraints.

D. Equitable and Low-Cost Access

Addressing unequal water access requires solutions that are fully society centered and affordable in addition to the use of expensive technology. In this regard initiatives of Bengaluru and Lima with their own trade-offs are discussed. In Bengaluru, a prepaid water meter system gave reliable, formal water access to hundreds of thousands of people in informal settlements, relieving them from expensive and unpredictable private water vendors [33]. Though this solution solved access issue but created the challenge of prepaid system making water unaffordable for the poor. Hence, worsening their situation further if they cannot pay risking disconnection. Lima initiative was inherently community focused and used fog nets to get drinking water from the air. This provided an important and extra water source for hundreds of families in a dry region, lowering their water costs and reducing their need for water trucks [34]. The main drawback of this initiative is its limited applicability as this natural solution only works in foggy areas. Moreover, water savings from this cannot fulfill adequate water supply for its local town people. The lesson from both cities is clear that a successful water initiative is not just about installing a connection but providing water that is affordable and safe. Therefore, technology alone is not enough and the need for subsidies and other social support through supportive governance and policies is highly importance to end unequal access of water.

E. Climate Resilience

Cities are moving from just reacting to climate disasters to proactively predicting risks saving water infrastructure and utilities. The Initiatives of Melbourne and Mexico City exemplify this approach, and both emphasize resilience to climate disasters depending on continuous commitment of funding and curation of reliable data. Melbourne employs AI and machine learning (ML) models that fuse real-time data from rain gauges, radar, and soil moisture sensors to predict floods and issue timely warnings [35]. However, its accuracy is limited by the quality of the live weather and ground data it receives. Meanwhile, Mexico City uses satellite-based InSAR (Interferometric Synthetic Aperture Radar) to track how the ground is sinking because of over-pumping groundwater. This data is crucial for initiatives that refill the aquifers and stabilize foundation of the city [36]. The major challenges these initiatives face are the high cost of satellite data and the need to check it with measurements from the ground. Therefore, success is hindered by reliable access to live data and massive cost. Ultimately, building climate resilience is a governance challenge which requires a long-term commitment to fund these advanced systems and to foster collaboration between data scientists, engineers, and policymakers to translate predictive knowledge into protective actions.

F. Governance and Policy

Success and failure of technology used for urban water solutions heavily depends upon governance and policies. To comprehend their role initiatives of California's groundwater and U.S. water cybersecurity show that policy is essential for guiding technology. In California, the Sustainable Groundwater Management Act (SGMA) was a necessary policy that mandated the use of IoT sensor networks to monitor well levels and set extraction limits, creating a

data-driven framework for a shared resource [37]. The major challenge this initiative faced was law enforcement to make sure everyone follows new rules. At the end it became a complex legal and practical problem. Similarly, U.S. cybersecurity rules provide key guidelines to help water utilities defend against digital attacks [38]. Their effectiveness is limited by two main factors; a) cyber threats evolve faster compared with regulations; b) many smaller utilities lack significant funds and expertise necessary for upgrades to deal with digital threats. This makes an evident gap where only wealthy utilities can be secured and put the rest at risk. The key lesson is that policies and technology are mutually dependent i.e. technology provides the data needed to create smart policies, and policy provides framework for safe and fair implementation of technology. Effectiveness of technology is limited by the fast-evolving cyber threats, the lack of funds and the expertise needed for necessary upgrades. Whereas without long-term funding, technical support, and strong enforcement, even the best policies will not succeed.

G. Lessons from Failed Initiatives

In this section we will discuss initiative those failed with first Flint's initiative. In this initiative a cost-cutting decision led to a switch in water sources without implementing mandatory corrosion control poisoning drinking water for more than 100,000 residents [8] causing a huge crisis. In this case most affected was the marginalized community fully revealing profound injustice and a catastrophic failure of accountability at multiple levels of government. Another relevant initiative is Chennai's drought which got worse because of top-down rigid management style. This centralized approach failed to use local water sources efficiently and made the poorest local class affected most by the water shortage [10].

Table 2. Synthesis of 14 urban water security initiatives

Initiative (Location)	Governance Approach	Equity Outcome	Overall Performance
Digital Twin (Singapore)	Adaptive, Long-term Investment	Neutral (System-focused)	Successful
Leak Detection (Tokyo)	Technocratic, Long-term Investment	Neutral (System-focused)	Successful
Smart Meters & Incentives (Las Vegas)	Incentive based, Voluntary	Mixed (Can favor wealthy)	Successful
Crisis Restrictions (Cape Town)	Centralized, Crisis-driven	Worsened (Burdened the poor)	Mixed
Wastewater Heat Recovery (Copenhagen)	Adaptive & Integrated (Water-Energy)	Neutral (System-focused)	Successful
Water Reuse for Irrigation (Israel)	National Strategic Planning	Neutral (Agricultural focused)	Successful
Prepaid Meters (Bengaluru)	Market-based, Utility-focused	Worsened (Risk of exclusion)	Failed
Fog Harvesting (Lima)	Community-driven, Low-tech	Improved (Community access)	Successful
AI Flood Prediction (Melbourne)	Data-driven, Adaptive	Neutral (City-wide benefit)	Promising
Satellite Monitoring (Mexico City)	Technologically informed	Neutral (Data not yet acted upon)	In Progress
Groundwater Quotas (California)	Data-driven, Mandated	Mixed (Challenged by legacy users)	In Progress
Cybersecurity Rules (USA)	Reactive, Mandated	Neutral (Critical infrastructure)	In Progress
Flint Water Crisis (Michigan)	Failed, Unaccountable	Severely Worsened (Environmental injustice)	Failed
Centralized Drought Management (Chennai)	Rigid, Top-down	Worsened (Inequitable distribution)	Failed

Same failure reason is evident from these initiatives, the local government failed to utilize available water resources and ignored marginalized community. The critical lesson is that cities equipped with modern technological solutions are not simply useless but dangerous if government is not trained to handle crises. True resilience is built not just with pipes and pumps, but by strong institutions that make community voice a central part in water management.

In Table 2 synthesis of all above discussed initiatives across the seven strategic dimensions is given. This table provides a consolidated view of each initiative's governance approach, equity outcome and overall performance.

V. COMPARATIVE INSIGHTS OF SUCCESS AND FAILURES

Major differences between the wealthier nations (Global North) and developing nations (Global South) are observed

based on the analysis of 14 globally selected urban water security initiatives. Wealthier nations need sustainable operations of sensor networks in Tokyo and continue to follow new regulations for groundwater quotas in California. For developing nations, affordability affects marginal communities like prepaid meters in Bengaluru and lack of public trust (fog nets in Lima) and solutions that work locally (failed drought response in Chennai) are prominent.

It is observed that governance failure results in system-wide crises (Flint, Chennai), whereas governance success connects different groups from water and energy departments (Copenhagen) or from local communities (Lima). Repeated failures of urban water security initiatives reveal that modern technology is useless without proper water governance. The initiatives of Flint and Chennai are not just stories of technological shortfalls, but profound failures of policy and equity that voided any technical investment. Whereas the implementation of adaptable and just rules in Cape Town allowed technology to thrive successfully with its full potential.

Inequity is observed in Bengaluru based on the non-affordability of prepaid meters by many poorest citizens and in Cape Town, where the burden of restrictions fell disproportionately on the poor. Failures of these initiatives conclude that technology itself can become a barrier to justice and be used exploitatively. Hence, pouring money into technology will waste all effort unless trustworthy financial support systems are developed and implemented simultaneously ensuring benefiting all.

From comparative analysis it is also concluded that human skills matter more than technology itself. The key skills identified from initiatives studied are long-term planning, adaptive learning, and inclusive community engagement. Flint's crisis underscores how a deficit in governance, transparency, and community engagement can invalidate the value of any technological infrastructure. Whereas the success of Melbourne initiative demonstrates that adaptive governance and continuous public consultation are critical to enabling technological systems to achieve their resilience objectives. Hence, addressing future urban water scarcity requires a fundamental shift: prioritizing investment in robust, equitable, and adaptive governance over the mere acquisition of technology.

VI. A STRATEGIC ROADMAP FOR URBAN WATER SECURITY

A strategic roadmap to be implemented in three phases to achieve urban water security is proposed based on the detailed analysis of 14 urban water initiatives. This three-phase roadmap is supported by a conceptual framework that positions technology not as a primary input but as a final force-multiplying output of effective governance and equity.

Phase 1: Establish Water Governance and Policies

Cities must adopt and implement adaptive governance, then design supportive policies framework to address water crisis under rapidly changing climate conditions. Also, resilient governance model is required to fulfill long-term consistent commitment related to investments and execution.

Phase 2: Offer Strong Commitment to Water Equity

Fair, just or equity-based water access requires focus on

affordability and active community participation by the good governance and policies framework duly in place. To ensure real benefits of implemented technology for all, integration of local knowledge and public feedback during planning process is critical. This will result in trust and transparency building for long-term public support.

Phase 3: Deploy Context-Specific Technology as a Force Multiplier

With strong governance and a commitment to equity in place, technology can now be deployed as a strategic tool to multiply the effectiveness of the entire system. More precisely, developed cities can focus on upgrading and securing water utilities and infrastructure. Developing nations should prioritize affordable solutions that broaden access. In this phase, technology is no longer a risk for failure but a practical enabler that delivers measurable, equitable outcomes.

VII. CONCLUSIONS

The analysis of 14 selected urban water initiatives worldwide confirms that sustainable urban water security is linked to technology that fits the local context, adaptable governance and supportive policies, and strong commitment to fairness. In addition, a three-step roadmap, i.e. governance, equity and context-specific technology provide a clear path to build efficient, resilient, and inclusive urban water secure systems. Also, this study directly addresses and contributes to two key global Sustainable Development Goals (SDGs) of United Nations including clean water (SDG-6) and sustainable cities (SDG-11).

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Conceptualization, H. A. Wajid, M. Abid; methodology, H. A. Wajid, M. Abid; formal analysis, H. A. Wajid, M. Abid; investigation, H. A. Wajid, M. Abid & Z. Abid; original draft preparation, H. A. Wajid, M. Abid & Z. Abid; writing, review and editing, H. A. Wajid, M. Abid & Z. Abid; all authors had approved the final version.

ACKNOWLEDGEMENTS

The authors acknowledge support and guidance of UNESCO Chair on Knowledge System for Integrated Water Resources Management, COMSATS University Islamabad Wah Campus, Wah Cantt, Pakistan in this research.

REFERENCES

- [1] United Nations World Water Assessment Programme (WWAP). (2021). The United Nations World Water Development Report 2021: Valuing Water. Paris, France: UNESCO. [Online]. Available: <https://unesdoc.unesco.org/ark:/48223/pf0000375724>
- [2] International Water Association (IWA). (2020). *Digital Water: Industry Leaders Chart the Transformation Journey*. London, U.K.: IWA Publishing. [Online]. Available: <https://iwa-network.org/publications/digital-water-industry-leaders-chart-the-transformation-journey/>
- [3] PUB. Singapore's National Water Agency. Annual Report. [Online]. Available: <https://www.pub.gov.sg/Resources/Publications/Corporate-Publications>

[4] S. Lee, H. Kim, and D. Kang, "Assessing urban water management sustainability of a megacity: Case study of Seoul, South Korea," *Water*, vol. 10, no. 6, p. 682, Jun. 2018. doi: 10.3390/w10060682

[5] K. Bakker and C. Morinville, "The governance dimensions of water security: A review," *Philos. Trans. Royal Soc. A*, vol. 371, no. 2002, p. 20130116, Sep. 2013. doi: 10.1098/rsta.2013.0116

[6] Southern Nevada Water Authority (SNWA). (2025). *2025 Water Resource Plan*. Las Vegas, NV, USA: SNWA. [Online]. Available: <https://www.snwa.com/assets/pdf/water-resource-plan-2025.pdf>

[7] City of Cape Town. (2020). *Our Shared Water Future: Cape Town's Water Strategy*. Cape Town, South Africa: City of Cape Town. [Online]. Available: <https://resource.capetown.gov.za/documentcentre/Documents/City%20Strategies,%20plans%20and%20frameworks/Cape%20Town%20Water%20Strategy.pdf>

[8] Michigan Civil Rights Commission. (2017). *The Flint Water Crisis: Systemic Racism Through the Lens of Flint*. Detroit, MI, USA: Michigan Dept. Civil Rights. [Online]. Available: https://www.michigan.gov/documents/mdcr/VFlintCrisisRep-F-Edite_d3-13-17_554317_7.pdf

[9] G. Connors, "When utilities muddle through: Pro-poor governance in Bangalore's public water sector," *Environment and Urbanization*, vol. 17, no. 1, pp. 201–218, 2005. doi: 10.1177/095624780501700107

[10] P. Beleyur, A. Revi, and N. Sami, *Reimagining Sub-National Water Governance*, Bangalore, India: The Indian Institute for Human Settlements and the Global Commission for the Economics of Water, 2024.

[11] J. Clark, *Uneven Innovation: The Work of Smart Cities*, New York, NY, USA: Columbia Univ. Press, 2020.

[12] Bureau of Waterworks, *Tokyo Metropolitan Government, Water Supply in Tokyo 2023–2024*, Tokyo, Japan: Tokyo Metro. Gov., 2023.

[13] B. Robinson, L. Lambert, and J. Millen, "A blockchain enabled water platform to improve the accountability and transparency of the Australian water markets," in *Proc. Climate Smart Engineering 2023 (CSE2023)*, Engineers Australia, 2023.

[14] J. V. Allan, S. J. Kenway, and B. W. Head, "Urban water security—what does it mean?" *Urban Water Journal*, vol. 15, no. 9, pp. 899–910, 2018.

[15] K. Bakker and C. Morinville, "The governance dimensions of water security: A review," *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, vol. 371, no. 2002, 20130116, 2013.

[16] P. Romero-Lankao and D. M. Gatz, "Conceptualizing urban water security in an urbanizing world," *Current Opinion in Environmental Sustainability*, vol. 21, pp. 45–51, 2016.

[17] A. K. Biswas, "Urban water security for developing countries," *River*, vol. 1, no. 1, pp. 15–24, 2022.

[18] K. J. Charles, T. Octavianti, E. Hylton, and G. Remmington, "Equity and urban water security," *Water Science, Policy, and Management: A Global Challenge*, pp. 329–343, 2019.

[19] J. Marçal, J. Shen, B. Antizar-Ladislao, D. Butler, and J. Hofman, "Assessing inequalities in urban water security through geospatial analysis," *PLoS Water*, vol. 3, no. 2, e0000213, 2024.

[20] E. A. Adams, L. Zulu, and Q. Ouellette-Kray, "Community water governance for urban water security in the Global South: Status, lessons, and prospects," *Wiley Interdisciplinary Reviews: Water*, vol. 7, no. 5, e1466, 2020.

[21] Y. Su, W. Gao, D. Guan, and T. A. Zuo, "Achieving urban water security: A review of water management approach from technology perspective," *Water Resources Management*, vol. 34, no. 13, pp. 4163–4179, 2020.

[22] E. Aivazidou, G. Banias, M. Lampridi, G. Vasileiadis, A. Anagnostis, E. Papageorgiou, and D. Bochtis, "Smart technologies for sustainable water management: An urban analysis," *Sustainability*, vol. 13, no. 24, 13940, 2021.

[23] H. A. Wajid and A. Eid Alluqmani, "Enhancing water sustainability in ablution (wudu): Lessons from Prophet Muhammad's (صَلَّى اللَّهُ عَلَيْهِ وَسَلَّمَ) wudu practice and the role of water-efficient aerators," *Journal of Umm Al-Qura University for Engineering and Architecture*, vol. 16, pp. 1119–1129, 2025.

[24] H. A. Wajid, "Activity-based mathematical modeling of household water consumption across regions: Proposing efficient fixtures for sustainable water management in Saudi Arabia," *Journal of Umm Al-Qura University for Engineering and Architecture*, vol. 16, pp. 574–582, 2025.

[25] H. A. Wajid *et al.*, "A voice-activated smart water dispensing system for sustainable and hygienic water use in Haramains: Design and impact potential," *Journal of Environmental Protection and Ecology*, vol. 26, no. 7, pp. 2536–2545, 2025.

[26] B. K. Mishra, S. Chakraborty, P. Kumar, and C. Saraswat, *Sustainable Solutions for Urban Water Security*, Springer International Publishing, 2020.

[27] W. Kawamura *et al.*, "An analysis of pipeline sensing data use for detecting water leakage," *Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research)*, vol. 72, no. 6, 2016. doi: 10.2208/jscjer.72.II_187

[28] J. F. Warner and R. Meissner, "Cape Town's 'Day Zero' water crisis: A manufactured media event?" *Int. J. Disaster Risk Reduct.*, vol. 64, 102481, Dec. 2021. doi: 10.1016/j.ijdrr.2021.102481

[29] T. N. J. Damsø, T. Kjær, and T. B. Christensen, "Implementation of local climate action plans: Copenhagen — towards a carbon-neutral capital," *Journal of Cleaner Production*, vol. 167, pp. 406–415, 2017. doi: 10.1016/j.jclepro.2017.08.156

[30] Organisation for Economic Co-operation and Development (OECD), *Israel's Sustainable Water Management Plans*, OECD Case Study, Paris, France, 2022.

[31] Organisation for Economic Co-operation and Development (OECD), *OECD Environmental Performance Reviews: Israel 2023*, OECD Publishing, Paris, France, 2023.

[32] K. S. Fielding, S. Dolnicar, and T. Schultz, "Public acceptance of recycled water," *International Journal of Water Resources Development*, vol. 35, no. 4, pp. 551–586, 2019. doi: 10.1080/07900627.2017.1419125

[33] K. S. K and K. Raj. (2020). Benchmarking of Bangalore Water Supply and Sewerage Board (BWSSB). Institute for Social and Economic Change, Bangalore, India. [Online]. Available: <https://www.iseec.ac.in/wp-content/uploads/2023/07/WP-505-Kavyashree-and-Krishna-Raj-Final.pdf>

[34] A. C. Ramirez Herrera, S. Bauer, and V. Peña Guillen, "Water-sensitive urban plan for Lima metropolitan area (Peru) based on changes in the urban landscape from 1990 to 2021," *Land*, vol. 11, no. 12, 2261, 2022. doi: 10.3390/land1112261

[35] Australian Water Association. (2023). Innovative simulation model set to transform flood planning and response. [Online]. Available: <https://www.awa.asn.au/resources/latest-news/innovative-simulation-model-set-to-transform-flood-planning-and-response>

[36] E. Cabral-Cano, D. Solano-Rojas, E. A. Fernández-Torres, and L. Salazar-Tlaczani, "Land subsidence hazards: A case study of Mexico City," in *Remote Sensing for Characterization of Geohazards and Natural Resources*, E. Chaussard *et al.*, Eds., Springer, Cham, 2024, pp. 291–307. doi: 10.1007/978-3-031-59306-2_15

[37] California Department of Water Resources (DWR). (2024). Sustainable Groundwater Management Act (SGMA): Annual Report 2024. Sacramento, CA, USA: State of California. [Online]. Available: <https://water.ca.gov/Programs/Groundwater-Management/SGMA-Groundwater-Management>

[38] S. O. Aniebonam and C. P. Aniebonam, "Cyber-physical risk assessment for U.S. water utilities: A comprehensive analysis of SCADA and operational technology vulnerabilities," *Journal of Environment, Climate, and Ecology*, vol. 2, no. 1, pp. 77–85, 2025. doi: 10.69739/jece.v2i1.1031

Copyright © 2026 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited ([CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)).