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Abstract—Accurate and timely assessment of the
physiological status of plants is crucial for resource optimization
and minimizing environmental impact in ecological monitoring
and agriculture. This study introduces a novel technique for
mapping pigment concentrations in plant leaves using
multispectral imaging. The key innovation of the proposed
approach is a multispectral camera equipped with
reconfigurable spectral filters, enabling application-specific
data acquisition. Combined with a data processing protocol, the
system achieves high measurement accuracy of leaf pigment
content even with limited spectral channels. The technique
includes camera calibration, spatiospectral correction, spectral
index selection, and nonlinear regression to develop empirical
models for estimating chlorophyll concentration. Validation
experiments on proximal sensing of lettuce (Lactuca sativa)
demonstrated that the ratio of Modified Chlorophyll Absorption
Ratio Index to Optimized Soil Adjusted Vegetation Index
achieved the best performance, with an R? of 0.81, an RMSE of
0.3 mg/L, and relative error of less than 20%. Limitations
include residual shading and interpolation artifacts, which
suggest opportunities for further improvement. The findings
highlight high potential of this technique for noninvasive and
high-throughput monitoring of plant health in both ecological
and agricultural contexts.

Keywords—precision agriculture, remote sensing, pigment
content mapping, spectral indices, multispectral imaging

[. INTRODUCTION

Modern ecological monitoring and agriculture increasingly
demand accurate and timely assessment of plant
physiological status. This allows for optimizing resources
such as pesticides and fertilizers while reducing
anthropogenic environmental impact. That is why plant
condition monitoring tools capable of promptly detecting
biotic and abiotic stress are in demand [1, 2]. Traditional
vegetation analysis methods, such as visual inspection and
biochemical laboratory tests, are limited in both spatial and
temporal resolution, highlighting the necessity for new high-
throughput approaches [3].

A promising direction in developing plant monitoring tools
involves the simultaneous acquisition and processing of
multiple spectral images using multispectral imaging.
Without spectral and spatial scanning, these devices can
capture the spectral characteristics of crops over large areas
in real-time. During the technical implementation of such
imaging systems, researchers face several critical tasks:
determining the principle of spectral data registration;
developing a method for correcting inherent data distortions;
and creating a method for converting corrected spectral data
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into relevant plant parameters.

From a technical standpoint, current trends in imaging
technology are miniaturization, performance enhancement,
and increased adaptability of sensing systems [4]. However,
integrating these features into a single device presents
significant challenges. A key innovation of the approach is a
single-shot multispectral camera with reconfigurable spectral
channels, enabling the system to adapt to specific monitoring
tasks [5, 6]. This flexibility significantly enhances the
precision and applicability of plant health assessments both
in remote and proximal sensing.

Since the proposed data acquisition principle is quite novel,
the development of data calibration and correction
methodology requires further refinement. In addition,
interpreting spectral images remains a key challenge: it is
essential to convert the obtained spatiospectral distributions
into feature maps that represent the physiological state of
vegetation and enable a comprehensive assessment of plant
health [7, 8]. This task becomes particularly challenging
when the number of spectral channels is limited, which is
typical for single-shot devices.

This study introduces a novel methodology for mapping
the spatial distribution of pigment concentrations in plant
leaves based on multispectral data acquired by the proposed
camera and validates it in a proximal sensing experiment.

II. LITERATURE REVIEW

A. Quantitative Estimation of Pigment Concentration

The pigment composition of plants is one of the most
comprehensive indicators of their physiological state, due to
the central role pigments play at various stages of
development [9]. Chlorophyll content in plant leaves is
influenced by a complex interaction of factors, including
climatic conditions, soil properties, light availability, nutrient
accessibility, and the genetic traits of individual organisms.
Chlorophyll concentration typically decreases under stress
and during plant senescence, while the ratio of chlorophyll a
to b changes in response to abiotic stressors such as light
deficiency, water stress, soil contamination, and temperature
fluctuations. Therefore, measurements of total chlorophyll,
chlorophyll a and b, as well as their ratio, can provide
valuable insights into plant-environment interactions [10].
Given the functional significance of pigments in determining
plant physiological status, understanding their temporal
dynamics and spatial distribution is of practical importance
for effective environmental and agricultural management.
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A crucial step following spectral data acquisition is
processing and interpreting it to determine the spatial
distribution of pigments. A well-established and widely used
method for analyzing vegetation reflectance spectra is based
on spectral indices, which are empirically related to pigment
concentrations in plants. Numerous studies have focused on
developing and refining techniques for quantitatively
estimating chlorophyll concentrations in plant tissues [11].
Chlorophyll absorption bands are typically located at
wavelengths of 428-430 nm, 452—455 nm, 642—644 nm, and
660—663 nm. About 30 vegetation indices have demonstrated
effectiveness in this task, including the widely known
Normalized Difference Vegetation Index (NDVI; 600-700,
750-850 nm) [12], Simple Ratio (SR; 645, 745 nm) [13],
modified Normalized Difference (mND,y5; 705, 750 nm)
[14], Chlorophyll Index Red Edge (Clgg; 710, 670 nm) [15],
and Enhanced Vegetation Index (EVI; 450, 600-700, 750—
850 nm) [16]. Indices such as RECAI (550, 720, 800 nm) [17]
minimize the influence of leaf structure, while RSI (704, 815
nm) is suitable for various crops [18]. Several indices based
on wavelengths around 705 nm and 750 nm employ equations
designed to minimize the effects of soil reflectance, non-
photosynthetic materials, incident light angle, and leaf
structure, such as MSR, MCARI, TCARI, OSAVI, and the
ratio MCARI/OSAVI [19].

B. Optimal Vegetation Index Selection

Multiple studies have been addressed to modify existing
indices [10, 11] and develop new ones [17, 20] for pigment
estimation. Consequently, selecting the most appropriate
spectral index for assessing the physiological state of crops
remains a challenge due to the numerous factors that affect
reflectance spectra. Leaf structure, water content, nutrient
status, disease presence, pigmentation, phyllotaxis, sun
exposure, and phenological stage are just a few of these
influencing variables. Each spectral index was initially
developed using a specific dataset, which limits its sensitivity
to pigment content under changing conditions. Additionally,
indices may be specific to particular sensors and spatial scales
(e.g., ground-based and satellite), highlighting the importance
of choosing the optimal index for each specific
application [21]. In the case of hyperspectral systems,
Zolotukhina et al. [22] proposed selecting the optimal index
and empirical model based on determination coefficients and
relative error, with pigment content determined by
standardized analytical methods. Acoustic-optical filtering
allows arbitrary spectral tuning and can reduce the time
required to capture all spectral images for computing various
indices [23, 24].

C. Multispectral Imagers

There are two main reasons for investigating the feasibility
of multispectral approaches in pigment mapping. First,
multispectral ~ imagers  typically offer outstanding
performance for agricultural applications, including compact
size and weight, high imaging speed, and transmittance
[4, 25, 26]. This study proposes a multispectral snapshot
camera based on dividing the optical aperture into different
spectral channels and simultaneously acquiring all spectral
images with a single sensor [5, 6]. This is a novel principle
for diagnostic imaging in agriculture and has several
advantages, including the absence of crosstalk typically

49

found in other multispectral imaging systems [26]. Another
benefit over mentioned cameras is the ability to relatively
easily change channels spectral bands and the spectral range
width, which is limited only by the sensor spectral sensitivity.
Some camera designs offer similar capabilities, for example,
systems with filter wheels which remain relatively bulky and
have reduced reliability due to moving parts [27]. Cameras
with multiple optical systems and separate sensors also allow
filters to be changed; however, they have a limited number of
channels and significant parallax [28-30]. Other advantages
of our camera include the accurate temporal synchronization
of registration and alignment of sensor spectral sensitivity for
different channels at the hardware level, which is difficult to
achieve in other systems.

The closest analogue of the proposed camera uses a
different element for spectral channel separation and
therefore cannot be considered fully reconfigurable [31]. The
novelty of the proposed system necessitates the development
of algorithms to correct inevitably occurring data distortions.
These algorithms are generally based on known processing
methods that are either suitable for or adapted to the specific
device. The algorithm for the proposed multispectral system
can be based on previously known methods for correcting
spectral and spatial sensitivity non-uniformity, dark current,
aberrations, and parallax [4, 22, 32].

The second reason is limited number of spectral bands in
multispectral cameras, which makes the selection of the
optimal index particularly important. However, this approach
has not yet been thoroughly investigated for multispectral
cameras with a limited number of channels. T. Boonupara
et al. [33] suggested a method for determining correlations
between a set of indices and pigment concentrations using
multispectral data from a 5-band camera. The study identified
the Enhanced Vegetation Index (EVI) as the most suitable for
monitoring pigment content in lettuce, showing a correlation
coefficient of 0.85 with chlorophyll concentration.
Furthermore, in these terms, the proposed reconfigurable
design provides additional flexibility in solving tasks and
enables obtaining more accurate data without significant
investments in updating or replacing the device.

D. Proposed Approach

In this study, a versatile approach to pigment concentration
mapping is presented and validated in a proximal sensing
experiment. To this end, a multispectral camera with
interchangeable spectral filters was developed. It allows for
optimized data acquisition. When the optimal wavelengths
related to proper spectral indices are established, the camera
may be tuned to image collection strictly in those bands. Thus,
using a single instrument, high-throughput and accurate
mapping of leaf pigment content becomes available for
multiple crops and environmental conditions.

III. MATERIALS AND METHODS

A. Biological Samples

The object of the study was cultivated lettuce (Lactuca
sativa), an annual herbaceous plant characterized by rapid
growth and high sensitivity to environmental conditions,
which makes it a common model organism in plant
physiology research. The overall experimental design
included six early-maturing cultivars (45-55 days to harvest
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maturity), sown at 20-day intervals under two mineral
nutrition regimes, with four replicates per treatment. The use
of staggered sowing allowed simultaneous observation of
plants at different physiological development stages during
each measurement session, significantly enhancing the
precision and reliability of the observations.

Standard 24-cell trays were used for planting. Non-pelleted
seeds were sown at a density of 5-7 plants per cell into a

cotton-mineral substrate placed in mesh pots 50 mm x 50 mm.

The nutrient solution fully complemented essential elements
(N 131, P 45, K 224, Ca 85, Mg 59, S 21, EC 1.7-1.6, N:K
ratio 1:1.7) and a half-strength version, corresponding to the
two nutritional treatments. During the experiment, two of six
cultivars were excluded from further observations due to
delayed initial development, which may indicate a more
extended vegetative growth period under artificial conditions
than specified by the seed breeder for open-field cultivation.
As the comparison between varieties was beyond the scope
of this study, this does not compromise the statistical validity
of the results.

Nutrient delivery was performed with a frequent sub-
irrigation method, which provided better root aeration under
the given conditions than a continuous flow system. The
solution was supplied to the trays for 25 min, with a 60-
minute interval between irrigations. Lighting conditions were
constant across all treatments at approximately 10-12 klx,
with a photoperiod of 10 h per day.

B. Laboratory Studies

Spectral imaging of the lettuce pots was conducted under
stable laboratory conditions in proximity sensing scenario.
Each sample was placed on a dark background and
illuminated by two halogen light sources positioned at 45°
angles from opposite sides to minimize shadowing. A
multispectral camera was mounted 1 m above the sample,
with the sensor plane aligned parallel to the table surface,
ensuring the entire plant was fully captured within the frame
of each spectral channel. For radiometric correction, a
reference panel was recorded under identical lighting and
registration conditions before imaging the samples. The
reference panel was made of fluoropolymer and served as a
reference object with a reflectance coefficient close to 1
across the entire spectral range of the imager.

A standard method for measuring pigment content
involves spectrophotometric analysis of a pigment extract
obtained through sample preparation [22]. Plant leaves were
weighed to obtain a specific sample mass (170 mg), then
homogenized in a mortar. Pigments were extracted using
ethanol (25 mL). The optical density of the extract was
measured by a spectrophotometer to quantify the total
chlorophyll ¢ and b content Chl (in mg/L), based on
established empirical relationships [34]:

Chl = 6.1 Dggs + 20.04 - Dgyo, (1)

where Dggs and Dg,q are the optical densities of the extract at
wavelengths of 665 and 649 nm.

C. Hardware

In this study, a multi-aperture spectral camera was
employed [5], featuring eight spectral channels covering the
450-800 nm range, evenly spaced central wavelengths at 50
nm intervals, and a bandwidth of 30 nm, with a field of view
of 55x70° and a frame rate up to 18 frames per second at a
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full resolution (Fig. 1). This device’s principle of
simultaneous spectral data acquisition is the simultaneous
acquisition of multiple spectral images by a single imaging
sensor using a multi-aperture system and a spectral lens array.
The selected spectral range, on the one hand, covers the
regions most sensitive to chlorophyll, and on the other hand,
corresponds to the standard sensitivity range of available
radiation detectors. Eight uniformly distributed wavelengths
serve to cover the entire spectral range and enable the
calculation of a wide range of spectral indices.

The division of the optical aperture into independent
spectral channels offers several advantages. First, integrating
the spectral channels into a modular multispectral unit allows
their fast replacement. Second, this design eliminates the
crosstalk typically found in alternative imagers based on
mosaic filters applied directly to the sensor at the pixel level.
Additionally, a single imaging sensor removes the necessity
to synchronize data streams from multiple detectors, reducing
the system’s mass and dimensions. As a result, the proposed
camera demonstrates enhanced adaptability and operational
convenience for both remote and proximal sensing, while
providing data of higher reliability and informativeness.

Mo Ay Ay A Ag Ay A
Fig. 1. Multispectral camera: principle of spectral image acquisition (left)
and appearance (right). Eight lenses and filters generate spectral images on a
single CMOS sensor. The transmission functions of the filters exhibit
minimal overlap and have Gaussian profiles.

The objective of spectral imaging is to reconstruct the
spatial distribution of the surface spectral reflectance
coefficient p(x,y,A). However, due to the wide variety of
multispectral cameras and their design based on different
physical principles, there is no standardized correction
procedure. As a result, a calibration algorithm must take into
account a significant number of factors that may distort the
output data.

D. Camera Calibration

A spectral reflectance coefficient for each pixel p(x,y,A)
is essential for assessing the condition of plants. However, the
output data from a multispectral camera does not directly
provide the reflectance coefficient. Instead, it offers a spatial
distribution of the object’s spectral radiance. This data is
further complicated by inevitable distortions caused by the
camera’s key components: spectral filters, the optical system,
and the sensor [32]. Thus, acquired images I'(x,y, 1) must
undergo calibration and radiometric correction prior to the
direct extraction of plant features.

Table 1 outlines the key parameters that need to be
considered during calibration, together with relevant
variables for mathematical calibration modelling. Table 1
also includes references that detail the impact these
parameters have on the data and effective methods for
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addressing and eliminating the associated distortions. Proper
attention to these calibration parameters, along with their
correct application, is vital for achieving reliable and accurate
results in plant condition assessment through spectral
measurements.

Table 1. Sources of data distortions

Parameters Variable Ref.

The dark current noise of the sensor I(x,y, 1) [35]

The non-linearity of the sensor response a, B,y [36]

The optical vignetting K,(x,y, 1) [22]

The non-uniformity of the sensor’s Ks(x,y,1) [32]

spectral sensitivity

Optical geometric distortions Axy(x,y, ), [37]
Ay,(x,y,2)

Geometric distortions due to parallax Ax, (1), Ay, (1) [32]

The spatiospectral distribution of a raw signal I'(x,y, 1)
provided by the multispectral camera can be expressed as
follows:

I'(x,y,A) == a +8 {Ks(x,y,l) K, (x, v, 1) -

[ x + Ax,(D) + Axg(x,, 1), ]} (2)
Y+ Ay, (D) + Aya(x, 3, 1), A
+ I.(x,y,4)

At the calibration stage, the variables from Eq. (2) are
quantified and subsequently corrected. Fig. 2 illustrates the
workflow of this procedure. Correction of these distortions
requires prior calibration of the multispectral camera to
determine the appropriate correction coefficients. Image
acquisition was carried out with the lens cap closed over a
range of exposure times to assess dark current noise. To
determine the sensor’s response nonlinearity [38] and
vignetting pattern [36], the output port of the integrating
sphere (Labsphere Spectra-FT-2300-W) was imaged across
varying brightness levels and exposure durations. Spectral
sensitivity was assessed with a tunable monochromatic light
source (Solar Laser Systems M266i—-1V). Calibration targets,
such as a checkerboard pattern and reference markers, were
imaged to correct optical distortion and align the images.
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After spectral images of the samples and the reference
panel were corrected, the spatial distribution of the surface
spectral reflectance p(x, y,A) was determined using the flat-
field method [39]. A binary mask was then generated to
isolate only the pixels corresponding to lettuce leaves, based
on the ratio of reflectance at 750 nm and 650 nm wavelengths,
followed by thresholding (threshold = 1.3). Ten vegetation
indices known to be sensitive to chlorophyll content were
calculated from the mean reflectance spectrum of all leaf
pixels in each sample. To estimate these indices under the
limited spectral resolution, Akima spline interpolation was
used due to its ability to preserve local variations without
distortions [40]. Considering the nonlinear relationship
between vegetation indices and pigment concentration
reported in [41], nonlinear regression to establish empirical
relationships between the index values and chlorophyll
content was applied. The optimal model and corresponding
vegetation index were selected according to the highest
coefficient of determination R?. The resulting empirical
relationship is then applied to each pixel of the optimized
vegetation index map to generate the spatial distribution of
chlorophyll concentration in plant leaves. Image processing
algorithm and statistical analysis was implemented in
MATLAB. Data acquisition and processing was performed
on a personal computer with CPU Intel Core i5-13420H, Intel
UHD Graphics, and RAM 16 Gb.

IV. RESULTS AND DISCUSSION

A. Spatiospectral Correction

The multispectral camera was calibrated to obtain
distortion correction coefficients. Spectral data from 15
lettuce samples were corrected using the proposed algorithm.
Fig. 3 shows examples of raw images and the corrected
results as a spatial distribution of the reflectance coefficient

p(x,y,2).
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Fig. 3. Raw data (top) and corrected spectral images (bottom).
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Next, a mask was generated for each sample to isolate the
pixels corresponding to the plant leaves. To calculate
vegetation indices further, the reflectance coefficient was
averaged over these pixels (Fig. 4).
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Fig. 4. Example of applying a mask (left) and the mean reflectance
spectrum with its variability across the samples, calculated for the
highlighted area (right).

B. Mapping Leaf Pigment Content

For each index, an empirical model y = a-x? + ¢ was
determined using the least squares method. The model
parameters and the adjustment criterion are presented in
Table 2. Table 2 indicates that the MCARI/OSAVI index is
the best predictor of chlorophyll concentration among those
considered, which can be explained by the index’s
chlorophyll sensitivity and the stability across various
lighting conditions and plant developmental stages [42].

Table 2. Model parameters
Model parameters

Vi a b c R? RMSE, mg/L
Clgg -0.6637  -0.4565 0.5306 0.61 0.06
MSR  -0.4134 -0.5887 0.3203 0.62 0.04
MTCI -0.4343 -0.6187 0.3305 0.60 0.04

MCARI -0.2661  -0.4327 0.2018 0.55 0.02
MCARI/

OSAVI -5.9780 -2.0910 0.9247 0.81 0.3
NDVI;o5 -0.2723  -0.6006 0.2107 0.63 0.03
OSAVI -0.2636  -0.5927 0.2045 0.62 0.02
RECAI  0.0687  0.7606 -0.1649 0.26 0.07

EVI -0.0004  4.3420 1.5410 0.02 1.72

RSI 1.4640  0.1235 -0.6014 0.46 0.08
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Fig. 5. Empirical model for calculating the chlorophyll content from
MCARI/OSAVI index.

Fig. 5 illustrates the model with the highest coefficient of
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determination, based on the MCARI/OSAVI index, along
with the corresponding scatterplot.

The spatial distributions of chlorophyll concentration were
obtained by applying the derived model to each pixel of the
selected vegetation index map. Some of them are shown in
Fig. 6.
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Fig. 6. Maps of total chlorophyll content in lettuce leaves.
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C. Error Assessment

The average relative error in pigment content using the
derived model is less than 20% and the R? is more then 0.81,
while other studies report errors as a rule in the range of
5-20% [43, 44] and 0.65-0.95, consequently [20, 45]. The
study’s results could be significantly improved by selecting
spectral channels through hyperspectral imaging and then
applying a multispectral approach. Hyperspectral data
provide higher spectral resolution, allowing for precise
identification of spectral features of plants and detection of
channels most sensitive to changes in pigment content.
Subsequently, a multispectral camera with optimized
channels will yield more accurate and efficient results in
monitoring the physiological state of the plants. This
approach helps reduce information loss and enhances the
accuracy of calculations, providing more reliable data for
assessing the condition of crops. Furthermore, the proposed
design of the multispectral camera allows for the selection
and replacement of spectral channels, offering flexibility and
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adaptability for different tasks and crop types.

The data interpolation using Akima splines effectively
compensated for the limited spectral channels at low
resolution. In our study, the spectral channels were evenly
distributed, minimizing distortions typical of interpolation.
This method proved suitable as it facilitates the calculation of
all necessary vegetation indices despite the limited number of
channels.

The limitations affecting the reliability of proposed
multispectral approach for pigment mapping can be divided
as follow: factors related to the imager, to conditions for data
acquisition, to the data processing algorithm, and to the study
subject. The primary features associated with the device is the
influence of the central wavelength, as well as the shape and
width of the spectral band, on the spectral indexes value and
model accuracy. While the influence of the central
wavelength was considered in other studies, the issues of
width and shape are much less frequently taken into account
[46].

Lighting conditions of the object also have a significant
impact on the results. The pigment concentration maps reveal
residual shadow effects from the leaves, indicating some
distortions during spectral data acquisition. Despite data
correction methods and optimization of image acquisition
conditions, shadows and varying leaf inclinations remain
significant factors affecting the accuracy of pigment
concentration estimation in certain leaf areas. These factors
are discussed in previous studies [21]. Improving lighting
conditions and applying methods for extracting the diffuse
component of reflected radiation may help minimize this
effect, enhancing the accuracy of pigment concentration
mapping [47].

Since the presented processing algorithm is free from
manually performed stages and the methods used are based
on well-established and proven techniques, the primary
source of uncertainty in the processing algorithm is rather the

conversion of spectral data into pigment concentration values.

This includes: selection of a set of related spectral indices,
method of constructing an empirical model, metrics for
assessing the model. An important aspect is also the
acquisition of validating data, i.e., the method and accuracy
of standard laboratory analyses.

The most significant uncertainty in the results can be
introduced by plant morphology. The effectiveness of the
model can vary significantly depending on the crop and leaf
shape, as well as the growth stage of the plant species [48].
This issue can be addressed through the proposed
methodology for determining the empirical model for each
new crop.

Selecting a distortion-resistant index becomes particularly
crucial in field conditions. Proposed methodology holds
promise for overcoming this challenge. Calibration
procedures should be adjusted to suit the particularities of
field data collection. Additional research is required to fine-
tune calibration stages, leveraging established methodologies
[49, 50]. Moving from lab-based studies to field deployment,
combined with integrating artificial intelligence into devices,
and enhancing specialization for specific tasks is a natural for
agrophotonics development. The foundational studies on
vegetation indices from the past decades [51, 52] have paved
the way for today’s advanced robotic and automated
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diagnostic systems, which are used in diverse field
applications [53, 54].

V. CONCLUSION

Multispectral imaging is one of the most promising
technologies for plant diagnostics in agriculture. The authors
aimed to fill the research gap regarding the feasibility of a
reconfigurable multispectral camera for mapping plant
pigments under proximal conditions. A novel snap-shot
multispectral camera based on the principle of optical
aperture division and simultaneous spectral images
acquisition by a single sensor was introduced. This camera
features several advantages, including the absence of
channels crosstalk and the ability to easily adjust spectral
bands and spectral range width. Additionally, a data
correction algorithm was developed to address inevitable
distortions in the acquired data. This algorithm is based on
established processing methods adapted specifically for the
suggested imager. An approach to non-contact assessing the
total chlorophyll concentration in plants using multispectral
imaging and determining the spatial distribution of the
optimal vegetation index was proposed. The effectiveness of
a multispectral camera with 8 channels evenly distributed in
the range of 450-800 nm for monitoring plant health was
demonstrated under proximal conditions. The study results
showed that the proper correction models and the
optimization of imaging conditions allow the determination
of the spatial distribution of pigment concentrations in leaves.
The proposed method is characterized by an average relative
error of less than 20% and a root mean square error of 0.3
mg/L, and it offers valuable opportunities for ecological and
agricultural applications, such as precision agriculture,
greenhouse management, and water stress monitoring, by
improving the accuracy of plant physiological status
assessment.

The proposed camera, along with the data acquisition and
processing method, offers several advantages over existing
systems, including adaptable design for various tasks, data
reliability, compact size, weight, as well as a low cost and
performance comparable to hyperspectral cameras. These
benefits make it a promising tool for versatile pigment
concentration mapping, applicable to both proximal sensing
in laboratory conditions and remote sensing with unmanned
aerial vehicles. However, during the study, residual shadow
effects from the leaves were observed, which require further
improvement of the proposed methodology. Further
calibration of multispectral imager, analysis of the influence
of individual processing steps on method robustness, and the
development of advanced correction techniques will enhance
the accuracy of pigment concentration mapping and ensure
more effective crop health monitoring. An important next
step will be testing the system under field conditions to
validate its robustness and applicability in real-world
agricultural and ecological scenarios, as well as integration
with machine learning, and adaptation to other crops.
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