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Abstract—Accurate and timely assessment of the 

physiological status of plants is crucial for resource optimization 
and minimizing environmental impact in ecological monitoring 
and agriculture. This study introduces a novel technique for 
mapping pigment concentrations in plant leaves using 
multispectral imaging. The key innovation of the proposed 
approach is a multispectral camera equipped with 
reconfigurable spectral filters, enabling application-specific 
data acquisition. Combined with a data processing protocol, the 
system achieves high measurement accuracy of leaf pigment 
content even with limited spectral channels. The technique 
includes camera calibration, spatiospectral correction, spectral 
index selection, and nonlinear regression to develop empirical 
models for estimating chlorophyll concentration. Validation 
experiments on proximal sensing of lettuce (Lactuca sativa) 
demonstrated that the ratio of Modified Chlorophyll Absorption 
Ratio Index to Optimized Soil Adjusted Vegetation Index 
achieved the best performance, with an R² of 0.81, an RMSE of 
0.3 mg/L, and relative error of less than 20%. Limitations 
include residual shading and interpolation artifacts, which 
suggest opportunities for further improvement. The findings 
highlight high potential of this technique for noninvasive and 
high-throughput monitoring of plant health in both ecological 
and agricultural contexts. 
 

Keywords—precision agriculture, remote sensing, pigment 
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I. INTRODUCTION 

Modern ecological monitoring and agriculture increasingly 
demand accurate and timely assessment of plant 
physiological status. This allows for optimizing resources 
such as pesticides and fertilizers while reducing 
anthropogenic environmental impact. That is why plant 
condition monitoring tools capable of promptly detecting 
biotic and abiotic stress are in demand [1, 2]. Traditional 
vegetation analysis methods, such as visual inspection and 
biochemical laboratory tests, are limited in both spatial and 
temporal resolution, highlighting the necessity for new high-
throughput approaches [3]. 

A promising direction in developing plant monitoring tools 
involves the simultaneous acquisition and processing of 
multiple spectral images using multispectral imaging. 
Without spectral and spatial scanning, these devices can 
capture the spectral characteristics of crops over large areas 
in real-time. During the technical implementation of such 
imaging systems, researchers face several critical tasks: 
determining the principle of spectral data registration; 
developing a method for correcting inherent data distortions; 
and creating a method for converting corrected spectral data 

into relevant plant parameters.  
From a technical standpoint, current trends in imaging 

technology are miniaturization, performance enhancement, 
and increased adaptability of sensing systems [4]. However, 
integrating these features into a single device presents 
significant challenges. A key innovation of the approach is a 
single-shot multispectral camera with reconfigurable spectral 
channels, enabling the system to adapt to specific monitoring 
tasks [5, 6]. This flexibility significantly enhances the 
precision and applicability of plant health assessments both 
in remote and proximal sensing.  

Since the proposed data acquisition principle is quite novel, 
the development of data calibration and correction 
methodology requires further refinement. In addition, 
interpreting spectral images remains a key challenge: it is 
essential to convert the obtained spatiospectral distributions 
into feature maps that represent the physiological state of 
vegetation and enable a comprehensive assessment of plant 
health [7, 8]. This task becomes particularly challenging 
when the number of spectral channels is limited, which is 
typical for single-shot devices. 

This study introduces a novel methodology for mapping 
the spatial distribution of pigment concentrations in plant 
leaves based on multispectral data acquired by the proposed 
camera and validates it in a proximal sensing experiment. 

II. LITERATURE REVIEW 

A. Quantitative Estimation of Pigment Concentration 

The pigment composition of plants is one of the most 
comprehensive indicators of their physiological state, due to 
the central role pigments play at various stages of 
development [9]. Chlorophyll content in plant leaves is 
influenced by a complex interaction of factors, including 
climatic conditions, soil properties, light availability, nutrient 
accessibility, and the genetic traits of individual organisms. 
Chlorophyll concentration typically decreases under stress 
and during plant senescence, while the ratio of chlorophyll a 
to b changes in response to abiotic stressors such as light 
deficiency, water stress, soil contamination, and temperature 
fluctuations. Therefore, measurements of total chlorophyll, 
chlorophyll a and b, as well as their ratio, can provide 
valuable insights into plant-environment interactions [10]. 
Given the functional significance of pigments in determining 
plant physiological status, understanding their temporal 
dynamics and spatial distribution is of practical importance 
for effective environmental and agricultural management. 
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A crucial step following spectral data acquisition is 
processing and interpreting it to determine the spatial 
distribution of pigments. A well-established and widely used 
method for analyzing vegetation reflectance spectra is based 
on spectral indices, which are empirically related to pigment 
concentrations in plants. Numerous studies have focused on 
developing and refining techniques for quantitatively 
estimating chlorophyll concentrations in plant tissues [11]. 
Chlorophyll absorption bands are typically located at 
wavelengths of 428–430 nm, 452–455 nm, 642–644 nm, and 
660–663 nm. About 30 vegetation indices have demonstrated 
effectiveness in this task, including the widely known 
Normalized Difference Vegetation Index (NDVI; 600–700, 
750–850 nm) [12], Simple Ratio (SR; 645, 745 nm) [13], 
modified Normalized Difference (mND଻଴ହ ; 705, 750 nm) 
[14], Chlorophyll Index Red Edge (CIୖ୉; 710, 670 nm) [15], 
and Enhanced Vegetation Index (EVI; 450, 600–700, 750–
850 nm) [16]. Indices such as RECAI (550, 720, 800 nm) [17] 
minimize the influence of leaf structure, while RSI (704, 815 
nm) is suitable for various crops [18]. Several indices based 
on wavelengths around 705 nm and 750 nm employ equations 
designed to minimize the effects of soil reflectance, non-
photosynthetic materials, incident light angle, and leaf 
structure, such as MSR, MCARI, TCARI, OSAVI, and the 
ratio MCARI/OSAVI [19]. 

B. Optimal Vegetation Index Selection 

Multiple studies have been addressed to modify existing 
indices [10, 11] and develop new ones [17, 20] for pigment 
estimation. Consequently, selecting the most appropriate 
spectral index for assessing the physiological state of crops 
remains a challenge due to the numerous factors that affect 
reflectance spectra. Leaf structure, water content, nutrient 
status, disease presence, pigmentation, phyllotaxis, sun 
exposure, and phenological stage are just a few of these 
influencing variables. Each spectral index was initially 
developed using a specific dataset, which limits its sensitivity 
to pigment content under changing conditions. Additionally, 
indices may be specific to particular sensors and spatial scales 
(e.g., ground-based and satellite), highlighting the importance 
of choosing the optimal index for each specific  
application [21]. In the case of hyperspectral systems, 
Zolotukhina et al. [22] proposed selecting the optimal index 
and empirical model based on determination coefficients and 
relative error, with pigment content determined by 
standardized analytical methods. Acoustic-optical filtering 
allows arbitrary spectral tuning and can reduce the time 
required to capture all spectral images for computing various 
indices [23, 24].  

C. Multispectral Imagers   

There are two main reasons for investigating the feasibility 
of multispectral approaches in pigment mapping. First, 
multispectral imagers typically offer outstanding 
performance for agricultural applications, including compact 
size and weight, high imaging speed, and transmittance 
[4, 25, 26]. This study proposes a multispectral snapshot 
camera based on dividing the optical aperture into different 
spectral channels and simultaneously acquiring all spectral 
images with a single sensor [5, 6]. This is a novel principle 
for diagnostic imaging in agriculture and has several 
advantages, including the absence of crosstalk typically 

found in other multispectral imaging systems [26]. Another 
benefit over mentioned cameras is the ability to relatively 
easily change channels spectral bands and the spectral range 
width, which is limited only by the sensor spectral sensitivity. 
Some camera designs offer similar capabilities, for example, 
systems with filter wheels which remain relatively bulky and 
have reduced reliability due to moving parts [27]. Cameras 
with multiple optical systems and separate sensors also allow 
filters to be changed; however, they have a limited number of 
channels and significant parallax [28–30]. Other advantages 
of our camera include the accurate temporal synchronization 
of registration and alignment of sensor spectral sensitivity for 
different channels at the hardware level, which is difficult to 
achieve in other systems. 

The closest analogue of the proposed camera uses a 
different element for spectral channel separation and 
therefore cannot be considered fully reconfigurable [31]. The 
novelty of the proposed system necessitates the development 
of algorithms to correct inevitably occurring data distortions. 
These algorithms are generally based on known processing 
methods that are either suitable for or adapted to the specific 
device. The algorithm for the proposed multispectral system 
can be based on previously known methods for correcting 
spectral and spatial sensitivity non-uniformity, dark current, 
aberrations, and parallax [4, 22, 32].  

The second reason is limited number of spectral bands in 
multispectral cameras, which makes the selection of the 
optimal index particularly important. However, this approach 
has not yet been thoroughly investigated for multispectral 
cameras with a limited number of channels. T. Boonupara  
et al. [33] suggested a method for determining correlations 
between a set of indices and pigment concentrations using 
multispectral data from a 5-band camera. The study identified 
the Enhanced Vegetation Index (EVI) as the most suitable for 
monitoring pigment content in lettuce, showing a correlation 
coefficient of 0.85 with chlorophyll concentration. 
Furthermore, in these terms, the proposed reconfigurable 
design provides additional flexibility in solving tasks and 
enables obtaining more accurate data without significant 
investments in updating or replacing the device.  

D. Proposed Approach 

In this study, a versatile approach to pigment concentration 
mapping is presented and validated in a proximal sensing 
experiment. To this end, a multispectral camera with 
interchangeable spectral filters was developed. It allows for 
optimized data acquisition. When the optimal wavelengths 
related to proper spectral indices are established, the camera 
may be tuned to image collection strictly in those bands. Thus, 
using a single instrument, high-throughput and accurate 
mapping of leaf pigment content becomes available for 
multiple crops and environmental conditions. 

III. MATERIALS AND METHODS 

A. Biological Samples 

The object of the study was cultivated lettuce (Lactuca 
sativa), an annual herbaceous plant characterized by rapid 
growth and high sensitivity to environmental conditions, 
which makes it a common model organism in plant 
physiology research. The overall experimental design 
included six early-maturing cultivars (45–55 days to harvest 

International Journal of Environmental Science and Development, Vol. 17, No. 1, 2026

49



  

maturity), sown at 20-day intervals under two mineral 
nutrition regimes, with four replicates per treatment. The use 
of staggered sowing allowed simultaneous observation of 
plants at different physiological development stages during 
each measurement session, significantly enhancing the 
precision and reliability of the observations. 

Standard 24-cell trays were used for planting. Non-pelleted 
seeds were sown at a density of 5–7 plants per cell into a 
cotton-mineral substrate placed in mesh pots 50 mm × 50 mm. 
The nutrient solution fully complemented essential elements 
(N 131, P 45, K 224, Ca 85, Mg 59, S 21, EC 1.7–1.6, N:K 
ratio 1:1.7) and a half-strength version, corresponding to the 
two nutritional treatments. During the experiment, two of six 
cultivars were excluded from further observations due to 
delayed initial development, which may indicate a more 
extended vegetative growth period under artificial conditions 
than specified by the seed breeder for open-field cultivation. 
As the comparison between varieties was beyond the scope 
of this study, this does not compromise the statistical validity 
of the results. 

Nutrient delivery was performed with a frequent sub-
irrigation method, which provided better root aeration under 
the given conditions than a continuous flow system. The 
solution was supplied to the trays for 25 min, with a 60-
minute interval between irrigations. Lighting conditions were 
constant across all treatments at approximately 10-12 klx, 
with a photoperiod of 10 h per day.  

B. Laboratory Studies 

Spectral imaging of the lettuce pots was conducted under 
stable laboratory conditions in proximity sensing scenario. 
Each sample was placed on a dark background and 
illuminated by two halogen light sources positioned at 45° 
angles from opposite sides to minimize shadowing. A 
multispectral camera was mounted 1 m above the sample, 
with the sensor plane aligned parallel to the table surface, 
ensuring the entire plant was fully captured within the frame 
of each spectral channel. For radiometric correction, a 
reference panel was recorded under identical lighting and 
registration conditions before imaging the samples. The 
reference panel was made of fluoropolymer and served as a 
reference object with a reflectance coefficient close to 1 
across the entire spectral range of the imager. 

A standard method for measuring pigment content 
involves spectrophotometric analysis of a pigment extract 
obtained through sample preparation [22]. Plant leaves were 
weighed to obtain a specific sample mass (170 mg), then 
homogenized in a mortar. Pigments were extracted using 
ethanol (25 mL). The optical density of the extract was 
measured by a spectrophotometer to quantify the total 
chlorophyll a and b content 𝐶ℎ𝑙 (in mg/L), based on 
established empirical relationships [34]:  

𝐶ℎ𝑙 ൌ 6.1 ∙ 𝐷଺଺ହ ൅ 20.04 ∙ 𝐷଺ସଽ, (1) 

where 𝐷଺଺ହ and 𝐷଺ସଽ are the optical densities of the extract at 
wavelengths of 665 and 649 nm. 

C. Hardware 

In this study, a multi-aperture spectral camera was 
employed [5], featuring eight spectral channels covering the 
450–800 nm range, evenly spaced central wavelengths at 50 
nm intervals, and a bandwidth of 30 nm, with a field of view 
of 55×70◦ and a frame rate up to 18 frames per second at a 

full resolution (Fig. 1). This device’s principle of 
simultaneous spectral data acquisition is the simultaneous 
acquisition of multiple spectral images by a single imaging 
sensor using a multi-aperture system and a spectral lens array. 
The selected spectral range, on the one hand, covers the 
regions most sensitive to chlorophyll, and on the other hand, 
corresponds to the standard sensitivity range of available 
radiation detectors. Eight uniformly distributed wavelengths 
serve to cover the entire spectral range and enable the 
calculation of a wide range of spectral indices. 

The division of the optical aperture into independent 
spectral channels offers several advantages. First, integrating 
the spectral channels into a modular multispectral unit allows 
their fast replacement. Second, this design eliminates the 
crosstalk typically found in alternative imagers based on 
mosaic filters applied directly to the sensor at the pixel level. 
Additionally, a single imaging sensor removes the necessity 
to synchronize data streams from multiple detectors, reducing 
the system’s mass and dimensions. As a result, the proposed 
camera demonstrates enhanced adaptability and operational 
convenience for both remote and proximal sensing, while 
providing data of higher reliability and informativeness.  

 

 
Fig. 1. Multispectral camera: principle of spectral image acquisition (left) 
and appearance (right). Eight lenses and filters generate spectral images on a 
single CMOS sensor. The transmission functions of the filters exhibit 
minimal overlap and have Gaussian profiles. 

 

The objective of spectral imaging is to reconstruct the 
spatial distribution of the surface spectral reflectance 
coefficient ρሺ𝑥, 𝑦, λሻ. However, due to the wide variety of 
multispectral cameras and their design based on different 
physical principles, there is no standardized correction 
procedure. As a result, a calibration algorithm must take into 
account a significant number of factors that may distort the 
output data. 

D. Camera Calibration 

A spectral reflectance coefficient for each pixel ρሺ𝑥, 𝑦, λሻ 
is essential for assessing the condition of plants. However, the 
output data from a multispectral camera does not directly 
provide the reflectance coefficient. Instead, it offers a spatial 
distribution of the object’s spectral radiance. This data is 
further complicated by inevitable distortions caused by the 
camera’s key components: spectral filters, the optical system, 
and the sensor [32]. Thus, acquired images  𝐼’ሺ𝑥, 𝑦, 𝜆ሻ must 
undergo calibration and radiometric correction prior to the 
direct extraction of plant features. 

Table 1 outlines the key parameters that need to be 
considered during calibration, together with relevant 
variables for mathematical calibration modelling. Table 1 
also includes references that detail the impact these 
parameters have on the data and effective methods for 
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addressing and eliminating the associated distortions. Proper 
attention to these calibration parameters, along with their 
correct application, is vital for achieving reliable and accurate 
results in plant condition assessment through spectral 
measurements. 

 
Table 1. Sources of data distortions 

Parameters Variable Ref. 
The dark current noise of the sensor 𝐼௧ሺ𝑥, 𝑦, 𝜆ሻ [35] 

The non-linearity of the sensor response 𝛼, 𝛽, 𝛾 [36] 
The optical vignetting 𝐾௩ሺ𝑥, 𝑦, 𝜆ሻ [22] 

The non-uniformity of the sensor’s 
spectral sensitivity 

𝐾௦ሺ𝑥, 𝑦, 𝜆ሻ [32] 

Optical geometric distortions 𝛥𝑥ௗሺ𝑥, 𝑦, 𝜆ሻ,
𝛥𝑦ௗሺ𝑥, 𝑦, 𝜆ሻ 

[37] 

Geometric distortions due to parallax 𝛥𝑥௣ሺ𝜆ሻ, 𝛥𝑦௣ሺ𝜆ሻ [32] 

 
The spatiospectral distribution of a raw signal 𝐼’ሺ𝑥, 𝑦, 𝜆ሻ 

provided by the multispectral camera can be expressed as 
follows:  

 𝐼’ሺ𝑥, 𝑦, 𝜆ሻ ൌൌ  𝛼 ൅ 𝛽 ቊ𝐾௦ሺ𝑥, 𝑦, 𝜆ሻ ⋅ 𝐾௩ሺ𝑥, 𝑦, 𝜆ሻ ⋅

⋅ 𝐼 ቈ
𝑥 ൅ 𝛥𝑥௣ሺ𝜆ሻ ൅ 𝛥𝑥ௗሺ𝑥, 𝑦, 𝜆ሻ,

𝑦 ൅ 𝛥𝑦௣ሺ𝜆ሻ ൅ 𝛥𝑦ௗሺ𝑥, 𝑦, 𝜆ሻ, 𝜆
቉ቋ

ఊ

 

൅ 𝐼௧ሺ𝑥, 𝑦, 𝜆ሻ 

(2) 

At the calibration stage, the variables from Eq. (2) are 
quantified and subsequently corrected. Fig. 2 illustrates the 
workflow of this procedure. Correction of these distortions 
requires prior calibration of the multispectral camera to 
determine the appropriate correction coefficients. Image 
acquisition was carried out with the lens cap closed over a 
range of exposure times to assess dark current noise. To 
determine the sensor’s response nonlinearity [38] and 
vignetting pattern [36], the output port of the integrating 
sphere (Labsphere Spectra-FT-2300-W) was imaged across 
varying brightness levels and exposure durations. Spectral 
sensitivity was assessed with a tunable monochromatic light 
source (Solar Laser Systems M266i–IV). Calibration targets, 
such as a checkerboard pattern and reference markers, were 
imaged to correct optical distortion and align the images.  

 

 
Fig. 2. Сalibration pipeline. 

After spectral images of the samples and the reference 
panel were corrected, the spatial distribution of the surface 
spectral reflectance ρሺ𝑥, 𝑦, λሻ was determined using the flat-
field method [39]. A binary mask was then generated to 
isolate only the pixels corresponding to lettuce leaves, based 
on the ratio of reflectance at 750 nm and 650 nm wavelengths, 
followed by thresholding (threshold = 1.3). Ten vegetation 
indices known to be sensitive to chlorophyll content were 
calculated from the mean reflectance spectrum of all leaf 
pixels in each sample. To estimate these indices under the 
limited spectral resolution, Akima spline interpolation was 
used due to its ability to preserve local variations without 
distortions [40]. Considering the nonlinear relationship 
between vegetation indices and pigment concentration 
reported in [41], nonlinear regression to establish empirical 
relationships between the index values and chlorophyll 
content was applied. The optimal model and corresponding 
vegetation index were selected according to the highest 
coefficient of determination 𝑅ଶ . The resulting empirical 
relationship is then applied to each pixel of the optimized 
vegetation index map to generate the spatial distribution of 
chlorophyll concentration in plant leaves. Image processing 
algorithm and statistical analysis was implemented in 
MATLAB. Data acquisition and processing was performed 
on a personal computer with CPU Intel Core i5-13420H, Intel 
UHD Graphics, and RAM 16 Gb. 
 

IV. RESULTS AND DISCUSSION 

A. Spatiospectral Correction 

The multispectral camera was calibrated to obtain 
distortion correction coefficients. Spectral data from 15 
lettuce samples were corrected using the proposed algorithm. 
Fig. 3 shows examples of raw images and the corrected 
results as a spatial distribution of the reflectance coefficient 
ρሺ𝑥, 𝑦, λሻ. 

 

 

 
Fig. 3. Raw data (top) and corrected spectral images (bottom). 
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Next, a mask was generated for each sample to isolate the 
pixels corresponding to the plant leaves. To calculate 
vegetation indices further, the reflectance coefficient was 
averaged over these pixels (Fig. 4). 

 

 
Fig. 4. Example of applying a mask (left) and the mean reflectance 
spectrum with its variability across the samples, calculated for the 

highlighted area (right).  
 

B. Mapping Leaf Pigment Content 

For each index, an empirical model 𝑦 ൌ  𝑎 ∙ 𝑥௕  ൅  𝑐  was 
determined using the least squares method. The model 
parameters and the adjustment criterion are presented in 
Table 2. Table 2 indicates that the MCARI/OSAVI index is 
the best predictor of chlorophyll concentration among those 
considered, which can be explained by the index’s 
chlorophyll sensitivity and the stability across various 
lighting conditions and plant developmental stages [42]. 

 
Table 2. Model parameters 

VI 
Model parameters 

𝒂 𝒃 𝒄 𝑹𝟐 𝑹𝑴𝑺𝑬, mg/L 

CIୖ୉ -0.6637 -0.4565 0.5306 0.61 0.06 

MSR -0.4134 -0.5887 0.3203 0.62 0.04 

MTCI -0.4343 -0.6187 0.3305 0.60 0.04 

MCARI -0.2661 -0.4327 0.2018 0.55 0.02 

MCARI/
OSAVI 

-5.9780 -2.0910 0.9247 0.81 0.3 

NDVI଻଴ହ -0.2723 -0.6006 0.2107 0.63 0.03 

OSAVI -0.2636 -0.5927 0.2045 0.62 0.02 

RECAI 0.0687 0.7606 -0.1649 0.26 0.07 

EVI -0.0004 4.3420 1.5410 0.02 1.72 

RSI 1.4640 0.1235 -0.6014 0.46 0.08 

 

 
Fig. 5. Empirical model for calculating the chlorophyll content from 

MCARI/OSAVI index.  
 

Fig. 5 illustrates the model with the highest coefficient of 

determination, based on the MCARI/OSAVI index, along 
with the corresponding scatterplot. 

The spatial distributions of chlorophyll concentration were 
obtained by applying the derived model to each pixel of the 
selected vegetation index map. Some of them are shown in 
Fig. 6. 
 

 
Fig. 6. Maps of total chlorophyll content in lettuce leaves. 

C. Error Assessment 

The average relative error in pigment content using the 
derived model is less than 20% and the 𝑅ଶ is more then 0.81, 
while other studies report errors as a rule in the range of  
5–20% [43, 44] and 0.65–0.95, consequently [20, 45]. The 
study’s results could be significantly improved by selecting 
spectral channels through hyperspectral imaging and then 
applying a multispectral approach. Hyperspectral data 
provide higher spectral resolution, allowing for precise 
identification of spectral features of plants and detection of 
channels most sensitive to changes in pigment content. 
Subsequently, a multispectral camera with optimized 
channels will yield more accurate and efficient results in 
monitoring the physiological state of the plants. This 
approach helps reduce information loss and enhances the 
accuracy of calculations, providing more reliable data for 
assessing the condition of crops. Furthermore, the proposed 
design of the multispectral camera allows for the selection 
and replacement of spectral channels, offering flexibility and 
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adaptability for different tasks and crop types.  
The data interpolation using Akima splines effectively 

compensated for the limited spectral channels at low 
resolution. In our study, the spectral channels were evenly 
distributed, minimizing distortions typical of interpolation. 
This method proved suitable as it facilitates the calculation of 
all necessary vegetation indices despite the limited number of 
channels.  

The limitations affecting the reliability of proposed 
multispectral approach for pigment mapping can be divided 
as follow: factors related to the imager, to conditions for data 
acquisition, to the data processing algorithm, and to the study 
subject. The primary features associated with the device is the 
influence of the central wavelength, as well as the shape and 
width of the spectral band, on the spectral indexes value and 
model accuracy. While the influence of the central 
wavelength was considered in other studies, the issues of 
width and shape are much less frequently taken into account 
[46].  

Lighting conditions of the object also have a significant 
impact on the results. The pigment concentration maps reveal 
residual shadow effects from the leaves, indicating some 
distortions during spectral data acquisition. Despite data 
correction methods and optimization of image acquisition 
conditions, shadows and varying leaf inclinations remain 
significant factors affecting the accuracy of pigment 
concentration estimation in certain leaf areas. These factors 
are discussed in previous studies [21]. Improving lighting 
conditions and applying methods for extracting the diffuse 
component of reflected radiation may help minimize this 
effect, enhancing the accuracy of pigment concentration 
mapping [47]. 

Since the presented processing algorithm is free from 
manually performed stages and the methods used are based 
on well-established and proven techniques, the primary 
source of uncertainty in the processing algorithm is rather the 
conversion of spectral data into pigment concentration values. 
This includes: selection of a set of related spectral indices, 
method of constructing an empirical model, metrics for 
assessing the model. An important aspect is also the 
acquisition of validating data, i.e., the method and accuracy 
of standard laboratory analyses. 

The most significant uncertainty in the results can be 
introduced by plant morphology. The effectiveness of the 
model can vary significantly depending on the crop and leaf 
shape, as well as the growth stage of the plant species [48]. 
This issue can be addressed through the proposed 
methodology for determining the empirical model for each 
new crop. 

Selecting a distortion-resistant index becomes particularly 
crucial in field conditions. Proposed methodology holds 
promise for overcoming this challenge. Calibration 
procedures should be adjusted to suit the particularities of 
field data collection.  Additional research is required to fine-
tune calibration stages, leveraging established methodologies 
[49, 50]. Moving from lab-based studies to field deployment, 
combined with integrating artificial intelligence into devices, 
and enhancing specialization for specific tasks is a natural for 
agrophotonics development. The foundational studies on 
vegetation indices from the past decades [51, 52] have paved 
the way for today’s advanced robotic and automated 

diagnostic systems, which are used in diverse field 
applications [53, 54]. 

V. CONCLUSION 

Multispectral imaging is one of the most promising 
technologies for plant diagnostics in agriculture. The authors 
aimed to fill the research gap regarding the feasibility of a 
reconfigurable multispectral camera for mapping plant 
pigments under proximal conditions. A novel snap-shot 
multispectral camera based on the principle of optical 
aperture division and simultaneous spectral images 
acquisition by a single sensor was introduced. This camera 
features several advantages, including the absence of 
channels crosstalk and the ability to easily adjust spectral 
bands and spectral range width. Additionally, a data 
correction algorithm was developed to address inevitable 
distortions in the acquired data. This algorithm is based on 
established processing methods adapted specifically for the 
suggested imager. An approach to non-contact assessing the 
total chlorophyll concentration in plants using multispectral 
imaging and determining the spatial distribution of the 
optimal vegetation index was proposed. The effectiveness of 
a multispectral camera with 8 channels evenly distributed in 
the range of 450–800 nm for monitoring plant health was 
demonstrated under proximal conditions. The study results 
showed that the proper correction models and the 
optimization of imaging conditions allow the determination 
of the spatial distribution of pigment concentrations in leaves. 
The proposed method is characterized by an average relative 
error of less than 20% and a root mean square error of 0.3 
mg/L, and it offers valuable opportunities for ecological and 
agricultural applications, such as precision agriculture, 
greenhouse management, and water stress monitoring, by 
improving the accuracy of plant physiological status 
assessment.  

The proposed camera, along with the data acquisition and 
processing method, offers several advantages over existing 
systems, including adaptable design for various tasks, data 
reliability, compact size, weight, as well as a low cost and 
performance comparable to hyperspectral cameras. These 
benefits make it a promising tool for versatile pigment 
concentration mapping, applicable to both proximal sensing 
in laboratory conditions and remote sensing with unmanned 
aerial vehicles. However, during the study, residual shadow 
effects from the leaves were observed, which require further 
improvement of the proposed methodology. Further 
calibration of multispectral imager, analysis of the influence 
of individual processing steps on method robustness, and the 
development of advanced correction techniques will enhance 
the accuracy of pigment concentration mapping and ensure 
more effective crop health monitoring. An important next 
step will be testing the system under field conditions to 
validate its robustness and applicability in real-world 
agricultural and ecological scenarios, as well as integration 
with machine learning, and adaptation to other crops.  

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Conceptualization, ASM; methodology, AAZ, AVG and 

International Journal of Environmental Science and Development, Vol. 17, No. 1, 2026

53



  

ASM; data curation, OAG and SSL; software, AAZ; 
validation, OAG and SSL; investigation, AVG, AAZ and 
SSL; writing—original draft preparation, ASM and AAZ; 
writing—review and editing, AVG and SSL; visualization, 
AAZ; supervision, project administration and funding 
acquisition, ASM. All authors have read and agreed to the 
published version of the manuscript.  

FUNDING 

This study is supported by Russian Science Foundation 
(project 25-16-00121). 

ACKNOWLEDGMENT 

This work was performed using the equipment of the 
Center for Collective Use of STC UI RAS [http:// 
https://ckp.ntcup.ru/en/]. 

REFERENCES 
[1] D. W. Girmaw, A. O. Salau, B. S. Mamo, and T. L. Molla, “A novel 

deep learning model for cabbage leaf disease detection and 
classification,” Discover Applied Sciences, vol. 6, no. 10, pp. 1–20, Oct. 
2024. doi: 10.1007/s42452-024-06233-1 

[2] B. M. Dodamani, R. Anoop, and D. R. Mahajan, “Agricultural drought 
modeling using remote sensing,” International Journal of 
Environmental Science and Development, vol. 6, no. 4, pp. 326–331, 
2015. doi: 10.7763/IJESD.2015.V6.612 

[3] H. Zhang, Y. Ge, X. Xie, A. Atefi, N. K. Wijewardane, and S. Thapa, 
“High throughput analysis of leaf chlorophyll content in sorghum using 
RGB, hyperspectral, and fluorescence imaging and sensor fusion,” 
Plant Methods, vol. 18, no. 1, pp. 1–17, Dec. 2022. doi: 
10.1186/s13007-022-00892-0 

[4] M. Barjaktarovic, M. Santoni, and L. Bruzzone, “Design and 
verification of a low-cost multispectral camera for precision agriculture 
application,” IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, vol. 17, pp. 6945–6957, 2024. doi: 
10.1109/JSTARS.2024.3377104 

[5] V. I. Batshev, A. V. Krioukov, A. S. Machikhin, and A. A. Zolotukhina, 
“Multispectral video camera optical system,” Journal of Optical 
Technology, vol. 90, no. 11, p. 706, Nov. 2024. doi: 
10.1364/JOT.90.000706 

[6] S. A. Mathews, “Design and fabrication of a low-cost, multispectral 
imaging system,” Applied Optics, vol. 47, no. 28, pp. F71–F76, Oct. 
2008. doi: 10.1364/AO.47.000F71 

[7] A. O. Salau and S. Jain, “Feature extraction: A survey of the types, 
techniques, applications,” in Proc. 2019 International Conference on 
Signal Processing and Communication (ICSC), Mar. 2019, pp. 158–
164. doi: 10.1109/ICSC45622.2019.8938371 

[8] Y. F. Li, X. G. Xu, W. B. Wu et al., “Hyperspectral estimation of 
chlorophyll content in grapevine based on feature selection and GA-
BP,” Scientific Reports, vol. 15, no. 1, pp. 1–13, Dec. 2025. doi: 
10.1038/s41598-024-84977-x 

[9] A. A. Clemente, G. M. Maciel, A. C. S. Siquieroli et al., “High-
throughput phenotyping to detect anthocyanins, chlorophylls, and 
carotenoids in red lettuce germplasm,” International Journal of 
Applied Earth Observation and Geoinformation, vol. 103, 102533, Dec. 
2021. doi: 10.1016/j.jag.2021.102533 

[10] G. A. Blackburn, “Hyperspectral remote sensing of plant pigments,” 
Journal of Experimental Botany, vol. 58, no. 4, pp. 855–867, Mar. 2007. 
doi: 10.1093/jxb/erl123 

[11] M. F. Taha et al., “High-throughput analysis of leaf chlorophyll content 
in aquaponically grown lettuce using hyperspectral reflectance and 
RGB images,” Plants, vol. 13, no. 3, p. 392, Jan. 2024. doi: 
10.3390/plants13030392 

[12] H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, and J. A. Miehé, 
“Detection of vegetation stress via a new high resolution fluorescence 
imaging system,” Journal of Plant Physiology, vol. 148, no. 5, pp. 599–
612, Jan. 1996. doi: 10.1016/S0176-1617(96)80081-2 

[13] G. S. Birth and G. R. McVey, “Measuring the color of growing turf 
with a reflectance spectrophotometer,” Agronomy Journal, vol. 60, no. 
6, pp. 640–643, Nov. 1968. doi: 
10.2134/agronj1968.00021962006000060016x 

[14] D. A. Sims and J. A. Gamon, “Relationships between leaf pigment 
content and spectral reflectance across a wide range of species, leaf 

structures and developmental stages,” Remote Sensing of Environment, 
vol. 81, no. 2–3, pp. 337–354, 2002. doi: 10.1016/S0034-
4257(02)00010-X 

[15] C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. De Colstoun, and 
J. E. McMurtrey, “Estimating corn leaf chlorophyll concentration from 
leaf and canopy reflectance,” Remote Sensing of Environment, vol. 74, 
no. 2, pp. 229–239, Nov. 2000. doi: 10.1016/S0034-4257(00)00113-9 

[16] H. Q. Liu and A. Huete, “A feedback based modification of the NDVI 
to minimize canopy background and atmospheric noise,” IEEE 
Transactions on Geoscience and Remote Sensing, vol. 33, no. 2, pp. 
457–465, Mar. 1995. doi: 10.1109/36.377946 

[17] B. Cui, Q. J. Zhao, W. j. Huang et al., “A new integrated vegetation 
index for the estimation of winter wheat leaf chlorophyll content,” 
Remote Sensing, vol. 11, no. 8, 2019. doi: 10.3390/rs11080974 

[18] Y. Inoue et al., “Simple and robust methods for remote sensing of 
canopy chlorophyll content: a comparative analysis of hyperspectral 
data for different types of vegetation,” Plant, Cell & Environment, vol. 
39, no. 12, pp. 2609–2623, 2016. doi: 10.1111/pce.12815 

[19] D. Haboudane, J. R. Miller, N. Tremblay, P. J. Zarco-Tejada, and L. 
Dextraze, “Integrated narrow-band vegetation indices for prediction of 
crop chlorophyll content for application to precision agriculture,” 
Remote Sensing of Environment, vol. 81, no. 2–3, pp. 416–426, 2002. 
doi: 10.1016/S0034-4257(02)00018-4 

[20] J. C. O. Koh, B. P. Banerjee, G. Spangenberg, and S. Kant, “Automated 
hyperspectral vegetation index derivation using a hyperparameter 
optimisation framework for high-throughput plant phenotyping,” New 
Phytologist, vol. 233, no. 6, pp. 2659–2670, Mar. 2022. doi: 
10.1111/nph.17947 

[21] H. Zhang, L. Wang, X. Jin, L. Bian, and Y. Ge, “High-throughput 
phenotyping of plant leaf morphological, physiological, and 
biochemical traits on multiple scales using optical sensing,” The Crop 
Journal, vol. 11, no. 5, pp. 1303–1318, Oct. 2023. doi: 
10.1016/j.cj.2023.04.014 

[22] A. Zolotukhina, A. Machikhin, A. Guryleva, V. Gresis, and V. Tedeeva, 
“Extraction of chlorophyll concentration maps from AOTF 
hyperspectral imagery,” Frontiers in Environmental Science, vol. 11, 
Apr. 2023. doi: 10.3389/fenvs.2023.1152450 

[23] O. I. Korablev, D. A. Belyaev, Y. S. Dobrolenskiy et al., “Acousto-
optic tunable filter spectrometers in space missions,” Applied Optics, 
vol. 57, no. 10, Apr. 2018. doi: 10.1364/AO.57.00C103 

[24] V. Pozhar et al., “Hyper-spectrometer based on an acousto-optic 
tuneable filters for UAVS,” Light & Engineering, pp. 99–104, Jun. 
2019. doi: 10.33383/2018-029 

[25] D. Mengu, A. Tabassum, M. Jarrahi, and A. Ozcan, “Snapshot 
multispectral imaging using a diffractive optical network,” Light: 
Science & Applications, vol. 12, no. 1, pp. 1–20, Dec. 2023. doi: 
10.1038/s41377-023-01135-0 

[26] C. Williams, G. S. D. Gordon, T. D. Wilkinson, and S. E. Bohndiek, 
“Grayscale-to-color: Scalable fabrication of custom multispectral filter 
arrays,” ACS Photonics, vol. 6, no. 12, pp. 3132–3141, Dec. 2019. doi: 
10.1021/acsphotonics.9b01196 

[27] F. Akkoyun, “Inexpensive multispectral imaging device,” 
Instrumentation Science & Technology, vol. 50, no. 5, pp. 543–559, 
2022. doi: 10.1080/10739149.2022.2047061 

[28] T. Sakamoto, D. Ogawa, S. Hiura, and N. Iwasaki, “Alternative 
procedure to improve the positioning accuracy of orthomosaic images 
acquired with Agisoft Metashape and DJI P4 Multispectral for crop 
growth observation,” Photogrammetric Engineering & Remote Sensing, 
vol. 88, no. 5, pp. 323–332, May 2022. doi: 10.14358/PERS.21-
00064R2 

[29] P. Carril, I. Colzi, R. Salvini et al., “Multispectral, thermographic and 
spectroradiometric analyses unravel bio-stimulatory effects of wood 
distillate in field-grown chickpea (Cicer arietinum L.),” Remote 
Sensing, vol. 16, no. 14, p. 2524, Jul. 2024. doi: 10.3390/rs16142524 

[30] A. Saccuti, F. Graziosi, and D. Lodi Rizzini, “A dataset for vineyard 
disease detection via multispectral imaging,” Data in Brief, vol. 61, 
Aug. 2025. doi: 10.1016/j.dib.2025.111712 

[31] Y. Liu et al., “A novel hybrid-DCNN-based framework for enhanced 
rice aboveground biomass estimation under limited samples,” IEEE 
Transactions on Geoscience and Remote Sensing, vol. 63, 2025. doi: 
10.1109/TGRS.2025.3544343 

[32] A. A. Zolotukhina et al., “Algorithm for the spatial-spectral correction 
of data captured by a multispectral camera,” Bulletin of the Russian 
Academy of Sciences: Physics, vol. 89, no. 4, pp. 590–594, Apr. 2025. 
doi: 10.1134/S1062873825710852 

[33] T. Boonupara, P. Udomkun, and P. Kajitvichyanukul, “Quantitative 
analysis of atrazine impact on UAV-derived multispectral indices and 
correlated plant pigment alterations: A heatmap approach,” Agronomy, 
vol. 14, no. 4, Apr. 2024. doi: 10.3390/agronomy14040814 

International Journal of Environmental Science and Development, Vol. 17, No. 1, 2026

54



  

[34] J. F. G. M. Wintermans and A. De Mots, “Spectrophotometric 
characteristics of chlorophylls a and b and their phenophytins in 
ethanol,” Biochimica et Biophysica Acta (BBA) - Biophysics including 
Photosynthesis, vol. 109, no. 2, pp. 448–453, Nov. 1965. doi: 
10.1016/0926-6585(65)90170-6 

[35] W. C. Porter, B. Kopp, J. C. Dunlap, R. Widenhorn, and E. Bodegom, 
“Dark current measurements in a CMOS imager,” in Proc. SPIE, Feb. 
2008, vol. 6816, pp. 98–105. doi: 10.1117/12.769079 

[36] H. Cao, X. Gu, X. Wei, T. Yu, and H. Zhang, “Lookup table approach 
for radiometric calibration of miniaturized multispectral camera 
mounted on an unmanned aerial vehicle,” Remote Sensing, vol. 12, no. 
24, Dec. 2020. doi: 10.3390/rs12244012 

[37] Z. Zhang, “A flexible new technique for camera calibration,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 
11, pp. 1330–1334, Nov. 2000. doi: 10.1109/34.888718 

[38] Y. Hanaoka, I. Suzuki, and T. Sakurai, “Practical method to derive 
nonlinear response functions of cameras for scientific imaging,” 
Applied Optics, vol. 50, no. 16, pp. 2401–2407, Jun. 2011. doi: 
10.1364/AO.50.002401 

[39] R. Pu, Hyperspectral Remote Sensing: Fundamentals and Practices, pp. 
1–466, Jan. 2017. doi: 10.1201/9781315120607 

[40] H. Akima, “A method of bivariate interpolation and smooth surface 
fitting based on local procedures,” Communications of the ACM, vol. 
17, no. 1, pp. 18–20, Jan. 1974. doi: 10.1145/360767.360779 

[41] G. A. Blackburn, “Relationships between spectral reflectance and 
pigment concentrations in stacks of deciduous broadleaves,” Remote 
Sensing of Environment, vol. 70, no. 2, pp. 224–237, Nov. 1999. doi: 
10.1016/S0034-4257(99)00048-6 

[42] C. Wu, Z. Niu, Q. Tang, and W. Huang, “Estimating chlorophyll 
content from hyperspectral vegetation indices: Modeling and 
validation,” Agricultural and Forest Meteorology, vol. 148, no. 8–9, 
pp. 1230–1241, Jul. 2008. doi: 10.1016/j.agrformet.2008.03.005 

[43] A. Zolotukhina et al., “Evaluation of leaf chlorophyll content from 
acousto-optic hyperspectral data: A multi-crop study,” Remote Sensing, 
vol. 16, no. 6, 1073, Mar. 2024. doi: 10.3390/rs16061073 

[44] Z. Ye et al., “A hyperspectral deep learning attention model for 
predicting lettuce chlorophyll content,” Plant Methods, vol. 20, no. 1, 
pp. 1–11, Dec. 2024. doi: 10.1186/s13007-024-01148-9 

[45] J. Zu et al., “Inversion of winter wheat leaf area index from UAV 
multispectral images: Classical vs. deep learning approaches,” 
Frontiers in Plant Science, vol. 15, 1367828, Mar. 2024. doi: 
10.3389/fpls.2024.1367828 

[46] B. Mandrapa et al., “Machine learning-based hyperspectral wavelength 
selection and classification of spider mite-infested cucumber leaves,” 
Experimental and Applied Acarology, vol. 93, no. 3, pp. 627–644, Oct. 
2024. doi: 10.1007/s10493-024-00953-0 

[47] L. J. S. Jong et al., “Separating surface reflectance from volume 
reflectance in medical hyperspectral imaging,” Diagnostics, vol. 14, no. 
16, Aug. 2024. doi: 10.3390/diagnostics14161812 

[48] M. S. Chiu and J. Wang, “Evaluation of machine learning regression 
techniques for estimating winter wheat biomass using biophysical, 
biochemical, and UAV multispectral data,” Drones, vol. 8, no. 7, 287, 
Jun. 2024. doi: 10.3390/drones8070287 

[49] L. Daniels, E. Eeckhout et al., “Identifying the optimal radiometric 
calibration method for UAV-based multispectral imaging,” Remote 
Sensing, vol. 15, no. 11, 2909, Jun. 2023. doi: 10.3390/rs15112909 

[50] S. K. Vishwakarma et al., “Mapping crop water productivity of rice 
across diverse irrigation and fertilizer rates using field experiment and 
UAV-based multispectral data,” Remote Sensing Applications: Society 
and Environment, vol. 37, 101456, Jan. 2025. doi: 
10.1016/j.rsase.2025.101456 

[51] A. A. Gitelson, Y. J. Kaufman, and M. N. Merzlyak, “Use of a green 
channel in remote sensing of global vegetation from EOS-MODIS,” 
Remote Sensing of Environment, vol. 58, no. 3, pp. 289–298, Dec. 1996. 
doi: 10.1016/S0034-4257(96)00072-7 

[52] A. R. Huete, R. D. Jackson, and D. F. Post, “Spectral response of a 
plant canopy with different soil backgrounds,” Remote Sensing of 
Environment, vol. 17, no. 1, pp. 37–53, Feb. 1985. doi: 10.1016/0034-
4257(85)90111-7 

[53] J. E. Gallagher and E. J. Oughton, “Surveying You Only Look Once 
(YOLO) multispectral object detection advancements, applications, 
and challenges,” IEEE Access, vol. 13, pp. 7366–7395, 2025. doi: 
10.1109/ACCESS.2025.3526458 

[54] L. Smeesters, F. Venturini, S. Paulus et al., “2025 photonics for 
agrifood roadmap: Towards a sustainable and healthier planet,” 
Journal of Physics: Photonics, vol. 7, no. 3, 032501, Jun. 2025. doi: 
10.1088/2515-7647/adbea9 

 
 
Copyright © 2026 by the authors. This is an open access article distributed 
under the Creative Commons Attribution License which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original 
work is properly cited (CC BY 4.0). 

 
 

International Journal of Environmental Science and Development, Vol. 17, No. 1, 2026

55


	IJESD-V17N1-1563



