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Abstract—Hydropower plants represent the largest category 

of renewable energy sources. However, they have a common 
environmental issue: they reduce the amount of dissolved 
oxygen in the rivers where they discharge the turbine outflow. 
Estimating dissolved oxygen levels in a practical manner 
represents an ongoing challenge for energy generation 
companies. This study presents a comprehensive model for 
predicting dissolved oxygen concentration using statistical 
regression techniques. The model is validated using data from 
El Quimbo hydropower plant in Colombia to predict dissolved 
oxygen in the water discharged into the Magdalena River. The 
approach uses Ordinary Least Squares regression to calibrate 
the river’s dynamic model of oxygen concentration.  

The results show that the model explains 79.8% of the 
variability in dissolved oxygen concentration (R2 = 0.798). The 
estimation of the required oxygen injection indicates that the 
highest demand occurs in September, reaching 39.99 tons per 
month. Model performance was assessed using statistical 
criteria, obtaining an Akaike Information Criterion (AIC) of 
873.3 and a Schwarz-Bayesian Information Criterion (BIC) of 
882.9. While this model provides a valuable initial tool for 
optimizing oxygen injection strategies to mitigate environmental 
impacts and ensure adequate water quality in hydroelectric 
projects, the paper also discusses future work on implementing 
a real-time control system for water oxygenation using more 
sophisticated machine-learning models.  
 

Keywords—dissolved oxygen concentration, hydropower 
plant, ordinary least squares, water quality, estimation of 
dissolved oxygen levels 

I. INTRODUCTION 

Several physical, chemical, and ecological effects are 
associated with dams in hydroelectric generation systems. 
Stratification of water and sediment trapping are well-
documented physical changes that induce chemical 
alterations such as deoxygenation of deep reservoir water, 
phosphorus remobilization, and high hydrogen sulfide  ሺHଶSሻ  
concentration [1]. Physical and chemical changes produce 
ecological changes in the impounded water and the river. 
Those ecological changes include altered thermal regimes, 
hypoxic stress, eutrophication, toxicity, oligotrophication, 
altered habitats, and shifts in fish communities. 
Understanding the dynamics of those changes in water 
quality and monitoring and managing their impact is essential 
for the environmental sustainability of hydroelectric 
generation systems. Several mathematical models are 
available to study the behavior of water quality in rivers and 
reservoirs [2–4]. However, the implementation of these 

models is hindered by their complexity. Companies and 
regulators require simpler models to monitor and manage 
water quality.   

This paper presents a comprehensive model to predict 
water quality using statistical regression techniques, which 
enable the accurate modeling of river conditions, the 
characteristics of various water sources, and the 
characteristics of a hydropower reservoir. The model was 
validated using data from the El Quimbo hydropower plant in 
Colombia to predict the quality of water discharged into the 
Magdalena River.  

A. Problem Statement 

Dissolved Oxygen (DO) is a key indicator commonly used 
to assess water quality and analyze water contamination. It is 
essential in characterizing the aquatic environment and shows 
the equilibrium between the processes that produce or 
consume oxygen [4, 5]. Energy and environmental authorities, 
as well as electric generation companies, have explored 
several strategies to mitigate dissolved oxygen at hydropower 
dams [6]. 

However, despite the importance of DO management in 
hydroelectric dams and the construction boom of 
hydroelectric dams in low-latitude developing countries [7], 
most research efforts are concentrated in temperate zones. 
Furthermore, according to Winton et al. [1], the current 
literature contains ambiguity and misinformation regarding 
the stratification and mixing behavior of low-latitude 
reservoirs. In that study, it is shown that some works claim 
that stratification in low-latitude dams is uncommon. In 
contrast, others argue that the stratification behavior of 
tropical lakes and reservoirs is typical. 

In instances where reservoir water exhibits stratification, it 
becomes essential to augment the dissolved oxygen levels in 
the discharged water and determine the most efficient method 
for DO injection. 

B. Contribution 

This paper presents two contributions. First, the paper 
proposes a model to capture the dynamics of oxygen 
concentration at a hydropower plant. The model is based on 
mass conservation principles and considers oxygen inflows, 
outflows, oxygen generation, consumption, and accumulation 
at the river downstream of the hydropower plant. Second, we 
propose Ordinary Least Squares (OLS) regression techniques 
to calibrate the river’s dynamic model of oxygen 
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concentration and determine the DO injection efficiently. The 
results allow optimization of the amount of oxygen injected 
when DO levels are insufficient. Finally, we present a case 
study in which we calibrate and assess the model using actual 
data from the El Quimbo hydropower plant, employing 
various statistical criteria.   

The model achieves an uncentered coefficient of 
determination of 0.798 (R2 = 0.798), indicating that the model 
explains approximately 79.8% of the variability in dissolved 
oxygen concentration. It also obtains an Akaike Information 
Criterion (AIC) of 873.3 and a Schwarz-Bayesian 
Information Criterion (BIC) of 882.9.  The results are 
compared with other approaches and discussed as the first 
stage of implementing an automatic real-time control system 
to improve water quality and maintain optimal dissolved 
oxygen levels, thereby preventing negative impacts on the 
aquatic ecosystem. 

C. Work Organization 

In Section II, we present the literature review. In Section 
III, we describe the dissolved oxygen model in detail and the 
calibration methodology using Ordinary Least Squares 
techniques. Section IV discusses the characteristics of the 
case study at the Quimbo hydropower plant. Section V 
discusses the results, how the model was trained and 
calibrated to define the monthly DO concentration in the river 
downstream from a hydropower plant, compares the 
approach with more sophisticated machine learning proposals, 
and discusses lines of future work in the project. Finally, 
Section VI presents the conclusions. 

II. LITERATURE REVIEW 

A.  Impact of Hydropower Operations on OD 
Concentration 

Hydropower projects frequently encounter issues related to 
Dissolved Oxygen (DO) concentrations in water [8]. The 
construction of a dam results in a reservoir that often 
experiences low oxygen levels due to stratification and water 
stagnation [1]. To maximize power generation efficiency and 
maintain operational capacity during periods of drought, 
water directed to the turbine is typically sourced from deeper 
reservoir layers, corresponding to the hypolimnion. 
Consequently, the water discharged into the outflow channel 
likely contains very low DO concentrations, which are then 
transported downstream, causing environmental impacts, 
particularly on aquatic life. 

Several case studies conducted in low-latitude regions 
suggest that tropical and subtropical rivers are particularly 
vulnerable to thermal and hypoxic impacts resulting from 
dams [1]. Cold water discharges have been shown to have 
severe effects on fish species in the Dartmouth  [9] and Keepit 
[10] dams in Australia. Additionally, alterations in the 
reproduction process and delays in fish spawning have been 
documented in China [11], in Brazil, up to 34 km downstream 
from the Tres Marías dam [12], and at the Clanwilliam dam 
in South Africa [13]. 

DO concentration is a critical parameter in water quality 
assessment. It is also essential for various aquatic species and 
serves as a fundamental environmental indicator in evaluating 
river ecosystems [2, 4]. Among the most significant effects of 
low DO concentrations on fish are reduced growth rates, 

increased stress, tissue hypoxia, diminished swimming 
activity, lowered immunity to diseases, elevated mortality 
rates, and a decline in the abundance, diversity, and catch 
rates of fish in the affected waters [14]. 

Regarding hypoxia issues, Higgins and Brock [15] found 
that 15 out of 19 dams in the southeastern United States 
routinely released water with dissolved oxygen 
concentrations lower than 5 mg/L, and seven of them with 
concentrations less than 2 mg/L. Hypoxic conditions with 
oxygen concentrations below 5mg/L were reported at dams 
like Bakun in Malaysia [16, 17] and Hume in Australia [18]. 
Although studies have shown the significant stress hypoxia 
causes to various fish species [6], there are few well-
documented field studies on the impact of hypoxia induced 
by dams on downstream ecosystems [1]. 

Several solutions have been developed to address the issue 
of anoxia in reservoirs. These solutions include deep oxygen 
injection systems, side-stream pumping systems, submerged 
contact chambers, turbine ventilation, air injection into 
turbines, aerating turbines, surface water pumps, aerating 
weirs, and multi-level water intakes [1, 8, 19]. As a result, 
multiple management methods exist for controlling dissolved 
oxygen content in discharges, with their feasibility varying 
depending on the specific characteristics of the dam. 

B. Modeling Approaches for DO Prediction 

Given the need for accurate prediction of Dissolved 
Oxygen (DO) levels and considering that operational 
reservoirs are complex hybrid systems subject to high 
uncertainty due to natural climatic variability, dynamic 
modeling has become an essential tool. These models enable 
the simulation of hydrological system behavior and support 
the development of simple yet versatile decision-making 
instruments. Such tools allow reservoir operators to evaluate 
different operational scenarios and anticipate the 
consequences of various management strategies [4].  

Recently, several proposals have investigated 
mathematical models to analyze the dynamics of water 
quality in rivers and reservoirs. These models include 
AEM3D, QUAL2Kw, LAKE2K, IBER, WASP, MIKE 11, 
MIKE 21, QUASAR, HEC-RAS, and MINTEQ [2–4]. 
However, the effective implementation of these models is a 
complex task depending on multiple factors, such as the 
availability and quality of input data, the structure and 
dynamics of the aquatic system, and the processes being 
simulated. Moreover, many of these models were initially 
designed for specific contexts, making it difficult to adapt 
them to other cases.  

Beyond mechanistic approaches, regression methods have 
also been employed to predict DO levels  [20]. In this regard, 
Nacar et al. [21] applied conventional regression techniques, 
including linear, power, and exponential models, as well as 
more advanced methods, such as Multivariate Adaptive 
Regression Splines (MARS) and the TreeNet Gradient 
Boosting Machine, to estimate DO concentrations in the 
Broad River, South Carolina. Their findings demonstrated 
that these models can accurately estimate DO levels across 
various monitoring sites and time periods. 

With recent advances in data management and artificial 
intelligence, numerous studies have explored the prediction 
of Dissolved Oxygen (DO) concentrations in aquatic systems 
by developing AI and machine learning models [22]. These 
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approaches offer notable advantages, including reduced input 
data requirements and the ability to effectively model 
complex, non-linear relationships [2]. 

Some of the machine learning techniques used for 
modeling water quality, including DO, are Artificial Neural 
Networks (ANNs) [23, 24], Recurrent Neural Networks 
(RNNs) [25], Random Forest, Support Vector Machines 
(SVMs) [26], and Adaptive-Neuro Fuzzy Inference Systems 
(ANFIS) [27]. Other researchers have also employed fuzzy 
inference systems to model water quality [2, 22]. 

III. DISSOLVED OXYGEN MODEL AND METHODOLOGY 

The main objective of this study is to develop a 
comprehensive model that accurately captures the dynamics 
of DO within the Quimbo hydropower plant. This model 
integrates various factors influencing DO levels, including 
inflows, outflows, oxygen generation, consumption, and 
accumulation. The selected approach is grounded in mass 
conservation principles and is designed to provide actionable 
insights for managing and optimizing the oxygenation 
process within the plant. 

The fundamental principle guiding the modeling approach 
is the conservation of mass. This principle states that the 
amount of oxygen in a closed system (or within a control 
volume in an open system like a river) remains constant 
unless influenced by external factors such as inflows, 
outflows, generation, and consumption  [28, 29]. 

Moreover, under the balance of matter theory [28], the 
variation in oxygen concentration within the system over time, 
designated as 𝛽, encapsulates the dynamic characteristics of 
the aquatic environment and can be mathematically 
represented in the form of a mass balance equation for a river 
system, as illustrated in Eq. (1). 

𝛽 ൌ 𝜌௜௡ െ 𝜌௢௨௧ ൅ 𝑂௚ െ 𝑂௖                   (1) 

In the equation, 𝜌௜௡ is the amount of oxygen entering the 
system from various sources, including atmospheric diffusion 
and tributary inputs. 𝜌௢௨௧  represents the amount of oxygen 
leaving the system, primarily through water flow downstream. 
𝑂௚ includes oxygen injected by the plant through mechanical 
means and oxygen added due to natural processes like 
turbulence from water movement. 𝑂௖ accounts for biological 
and chemical processes, such as the decomposition of organic 
and inorganic matter, which consumes oxygen. 

A. Input Data 

 

 
Fig. 1.  Oxygen dynamics and measurement at MGE1. 

Based on the principles of mass balance and mass 
conservation, the input data for the model can be derived from 
various sources, including the consumption of oxygen within 

the system and the corresponding flow rates. These may 
encompass the water within the reservoir, the water at the 
spillway, the turbine outflow, the downstream river, and any 
artificial source of oxygen injection, as illustrated in Fig. 1. 
The data must be filtered and classified according to a typical 
time window. 

B. Dissolved Oxygen Model  

The model for the DO dynamics in the water in a 
hydropower plant can be formulated as a partial differential 
equation based on the rate of oxygen concentration change 
over time, as shown in Eq. (2). 

 

 
ௗ஼

ௗ௧
ൌ 𝛽ଵ ∑ 𝜎௧𝑄௧

்
௧ୀଵ ൅ 𝛽ଶ ∑ 𝜎௕𝑄௕

஻
௕ୀଵ ൅

            ൅𝛽ଷ ∑ 𝜎௦𝑄௦
ௌ
௦ୀଵ ൅ 𝛽ସ𝛾 െ 𝐶𝐷𝑂 

               (2) 

 

where, 𝛽ଵ, ⋯ , 𝛽ସ the calibrated coefficients represent the 
efficiency of oxygen transfer for the turbine, bottom 
discharge, spillway, and artificial oxygen injection, 
respectively. The parameters 𝜎௧, 𝜎௕ , and 𝜎௦  represent the 
oxygen concentration (mg/L) of the water flow from the 
turbine, the bottom discharge, and the spillway of the 
hydropower plant, respectively. 𝑄௧, 𝑄௕,  and  𝑄௦  are water 
flow rates (m3/s) from the turbine, the bottom discharge, and 
the spillway. CDO is the Chemical Demand of Oxygen (kg/d) 
required by biological and non-biological processes within 
the system, and 𝛾 is the oxygen plant’s injection rate (kg/d). 

Eq. (2) models the dynamic interaction between the inflow 
and outflow of oxygen, its generation and consumption 
within the system, and the resulting accumulation or 
depletion of DO over time.  

Each variable exerts a distinct influence on the overall 
oxygen concentration. For instance, turbine flow rates 
contribute to the mixing of water and oxygen. Higher flow 
rates typically enhance mixing, potentially leading to 
increased oxygen levels. It is important to note that the 
bottom discharge flow rate influences the oxygen content at 
the bottom of the reservoir, where oxygen levels are often 
lower due to decomposition processes. Similarly, the spillway 
flow rate affects the oxygen levels at the surface and 
contributes to the overall oxygen dynamics through mixing 
and aeration. 

Conversely, the oxygen concentrations at turbines indicate 
the oxygen levels in the water being released from these 
turbines. These measurements are essential for calibrating the 
model. While bottom discharge oxygen concentration 
provides insights into the oxygen levels in the deeper parts of 
the reservoir, spillway oxygen concentration reflects the 
surface oxygen levels.  

Chemical and Biological Oxygen Demand represents the 
total oxygen required by chemical and biological processes 
within the water body. Higher CDO values indicate higher 
consumption of oxygen, which can result in lower overall 
oxygen levels if not adequately compensated for by 
generation and inflow. Efficiency coefficients are specific to 
the system’s components (turbines, spillways, and plant) and 
represent the effectiveness with which oxygen is transferred 
into the water. Calibration of these coefficients is essential for 
accurate modeling. 

C. Model Calibration 

Calibration can be conducted using OLS regression to 
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guarantee the model’s precision. Concretely, we adjust the 
model coefficients based on observed data. The process has 
the following steps: data preparation, initial parameter 
estimation, regression analysis, and validation. We now 
explain each step in detail. 

1) Data preparation 

It is well known that data collection processes are 
susceptible to systematic and random errors. As a result, the 
raw data collected may not be entirely accurate and should 
not be used without careful consideration. Data preparation is 
critical in the regression algorithms to ensure data accuracy 
and quality. 

Data preparation is collecting, labeling, and cleaning raw 
data to ensure its suitability for utilization in linear regression 
[30]. We have conducted a series of tests to confirm that the 
input data falls within the specified range, is in the correct 
format, and has been entered consistently and logically. We 
also verified that each field in the database has a unique entry. 
Fig. 2 shows the data distribution for each variable used in the 
model. These histograms show the average value in red, the 
25th percentile in black, and the 75th percentile in yellow. 

 

 
Fig. 2. Histograms of input variables. 

 

2) Parameters estimation 

Initial parameter estimation for the model coefficients is 
derived from empirical observations and theoretical 
considerations. 

3) Multiple regression approach 

Simple linear regression is an effective method for 
forecasting a response based on a single predictor variable. In 
many cases, such as DO estimation, the dependent variable is 
influenced by more than one independent variable. Rather 
than creating a separate simple linear regression model for 

each predictor, it is preferable to extend the simple linear 
regression model so that it can directly accommodate 
multiple predictors. This can be achieved by assigning a 
distinct slope coefficient to each predictor in a single model. 
In general, if there are 𝑝  distinct predictors, the multiple 
linear regression model can be formulated as follows: 

 
𝑦 ൌ 𝛽଴ ൅ 𝛽ଵ𝑥ଵ ൅ 𝛽ଶ𝑥ଶ ൅ 𝛽ଷ𝑥ଷ ൅ 𝜖                   (3) 

 
In this context,  𝑥௝  represents the 𝑗𝑡ℎ predictor, while 𝛽௝ 

quantifies the association between that variable and the 
dependent variable 𝑦. The coefficient 𝛽௝ is interpreted as the 
average effect on 𝑦 of a one-unit increase in 𝑥௝. 

According to Eqs. (2) and (3), the estimated dissolved 
oxygen in the downstream region of the hydropower plant can 
be formulated as a multiple linear regression problem, as 
illustrated in Eq. (4).  

 

 
𝑦 ൌ ∑ ଵ

ொ೙

ே
௡ୀଵ ሼ𝛽ଵ ∑ 𝜎௧𝑄௧

்
௧ୀଵ ൅ 𝛽ଶ ∑ 𝜎௕𝑄௕

஻
௕ୀଵ ൅

            ൅𝛽ଷ ∑ 𝜎௦𝑄௦
ௌ
௦ୀଵ ൅ 𝛽ସ𝛾 െ 𝐶𝐷𝑂ሽ 

          (4) 

 
where, ∑ 𝜎௧𝑄௧

்
௧ୀଵ , ∑ 𝜎௕𝑄௕

஻
௕ୀଵ , ∑ 𝜎௦𝑄௦

ௌ
௦ୀଵ , and 𝛾  represent 

the predictors 𝑝ଵ, 𝑝ଶ, 𝑝ଷ, and 𝑝ସ, respectively. The regression 
coefficients 𝛽ଵ , 𝛽ଵ , 𝛽ଷ , and 𝛽ସ  can be estimated using 
ordinary least squares regression, as shown in Eq. (5). 

min
ఉଵ,ఉమ,ఉయ,ఉర

ቛ𝑦 െ ∑ ଵ

ொ೙

ே
௡ୀଵ ሼ𝛽ଵ ∑ 𝜎௧𝑄௧

்
௧ୀଵ ൅ 𝛽ଶ ∑ 𝜎௕𝑄௕

஻
௕ୀଵ ൅

            ൅𝛽ଷ ∑ 𝜎௦𝑄௦
ௌ
௦ୀଵ ൅ 𝛽ସ𝛾 െ 𝐶𝐷𝑂ሽ‖ଶ

  (5) 

IV. CASE STUDY 

The proposed methodology has been applied to the El 
Quimbo Hydropower Plant, located in Colombia, in the upper 
Magdalena River basin. The dam that has generated the 
reservoir of the El Quimbo Hydropower Power Plant is 
situated in the canyon formed by the Magdalena River at the 
rocky ridge of the Gualanda and Superior Formation at the El 
Quimbo site, 1300 𝑚  upstream of the confluence of the 
Magdalena and Paez rivers, as shown in Fig. 3. 

 

 
Fig. 3. Location of the El Quimbo Hydropower Plant in Huila, Colombia. 

 

The hydropower consists of a dam, an auxiliary closure 
dam, a detour system, a spillway, a conveyance system, and 
a powerhouse at the foot of the dam. The reservoir has a 
length of 55 km at the maximum normal operating level 
(elevation 720 𝑚 above sea level), a maximum width of 4 km, 
and an average width of 1.4 km. The inundation area would 
be 8250 ha, and the total reservoir volume 3205 hm3 and the 
useful storage volume is 1824 hm3. The powerhouse is 
shallow at the foot of the dam, with two vertical-axis Francis 
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turbines and a rated power of 200 MW per machine, working 
with a net head of 122 m and a flow of 187.5 m3/s. The total 
installed capacity is about 400 MW. 

V. RESULTS AND DISCUSSION 

A. Input Data 

The veracity of a model depends on the quality and 
availability of the input data. It is, therefore, essential to 
ensure that data is collected continuously and with precision 
to maintain the model’s reliability. 

The data utilized in the modeling process were obtained 
from various monitoring points, including Spillway, Turbine 
Flow, and Bottom Discharge. Fig. 4 shows the locations of 
the MGE1 points where CDO is measured. 

 

 
Fig. 4. Measurement and data collection points. 

 
The Quimbo reservoir exhibits spatial heterogeneity in its 

DO levels, influenced by depth, distance from inflow points, 
and proximity to the plant’s discharge areas. The model 
accounts for these spatial variations by segmenting the 
reservoir into distinct zones and applying localized 
calibration parameters. This approach ensures that the model 
can accurately predict oxygen levels across different parts of 
the river.  

B. Normality Tests 

Normality tests can determine whether a normal 
distribution fits a data set and calculate the probability that a 
random variable underlying the data set is normally 
distributed. Two types of normality tests have been used: 
normality analysis by hypothesis testing and quantile 
comparison plots. 

Shapiro-Wilk, D’Agostino’s K-squared, Jarque-Bera, 
Lilliefors, and Anderson-Darling methods were used to test 
the normality hypothesis. In all these methods, the p-value is 
greater than the predefined significance level, so the null 
hypothesis cannot be rejected, and the data have a normal 
distribution pattern.  

The quantile comparison plot (qqplot) represents the 
quantiles of the data distribution against the theoretical 
quantiles that follow a normal distribution with the same 
mean and standard deviation as the measured data. Fig. 5 
shows this comparison, where the data are aligned close to 
the diagonal of the plot, which allows for confirmation that 
the data follow a normal distribution.  

C. Ordinary Least Squares Regression 

Ordinary least squares regression was used to calibrate the 
river’s dynamic model of oxygen concentration. This process 

involved fitting the model coefficients to the observed data to 
optimize the model’s accuracy in predicting oxygen 
concentration. 

 

 
Fig. 5. Normal Quantile-Quantile plot. 

 
Table 1 presents the model results using OLS regression 

with a dataset of 183 observations. The uncentered coefficient 
of determination (R² = 0.798) indicates that the model 
explains approximately 79.8% of the variability in dissolved 
oxygen concentration, suggesting an acceptable fit to the data. 
Additionally, the Akaike Information Criterion (AIC) and the 
Schwarz Bayesian Information Criterion (BIC) have values 
of 873.3 and 882.9, respectively. 

 
Table 1. OLS regression results 

Parameter Value 
Dep variable y 

Model OLS 
Method Least Squares 

No. Observations 183 
DF Residuals 180 

DF Model 3 
Covariance Type Non-robust 

R-squared (uncentered) 0.798 
Adj. R-squared (uncentered) 0.798 

F-statistic 237.7 
Prob (F-statistic) 2.4E-62 
Log-Likelihood -433.6 

AIC 873.3 
BIC 882.9 

 
An R2 of 0.798 indicates that the model explains a 

significant portion of the variance in dissolved oxygen 
concentration. Still, it also suggests that approximately 20.2% 
of the variability remains unexplained by the included 
predictors. This unexplained variation could be attributed to 
external factors, such as seasonal climate fluctuations, 
changes in oxygen demand, or measurement inaccuracies that 
are not directly addressed in the model. Future work may 
incorporate more sophisticated machine learning techniques 
into the project, as well as other improvements to the current 
model.  

The evaluation metrics comprehensively assess the 
model’s fit to the observed data. The high R-squared values 
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indicate that the model explains a sizable portion of the 
variability in oxygen levels. Furthermore, the statistical 
significance of the model coefficients and the F-statistics 
provide additional support for the robustness of the model. 

Table 2 shows the value of the coefficients 𝛽ଵ , 𝛽ଷ , and 
𝛽ସ obtained from the least squares regression. Note that all the 
coefficients are statistically significant, as indicated by their 
𝑝  values, 𝑝 ൏ 0.05 . This suggests that the data provide 
sufficient evidence to reject the null hypothesis for the entire 
population, thereby indicating a non-zero correlation. 
Consequently, changes in the independent variable are 
associated with changes in the dependent variable at the 
population level. In the case of 𝛽ଶ, a value of 1 is assumed 
because of its negligible impact on the dissolved oxygen 
concentration. 

 
Table 2. Coefficient from OLS regression 

Coef Value Std err T 𝒑 ൐ |𝒕| |𝟎. 𝟎𝟐𝟓 𝟎. 𝟗𝟕𝟓| 
𝛽ଵ 1.3905 0.206 6.746 0.000 0.984 1.797 
𝛽ଷ 1.9359 0.129 14.972 0.000 1.681 2.191 
𝛽ସ 11.6412 1.009 11.536 0.000 9.650 13.632 

 
When comparing our regression model to approaches used 

in previous studies, we found no dissolved oxygen (DO) 
models based on actual data applied to hydroelectric projects 
that consider both the river and the reservoir. Moreover, many 
studies focus on machine learning techniques, which, unlike 
our regression approach, assume a linear relationship 
between predictors and dissolved oxygen (DO) and are better 
suited for capturing complex non-linear interactions. 

Csábrági et al.  [10] estimated the oxygen concentration in 
the Tisza River using Radial Basis Function Neural Networks 
(RBFNN) and General Regression Neural Networks (GRNN). 
The results showed that machine learning techniques, 
particularly neural networks, achieved superior predictive 
performance when trained on carefully selected, 
homogeneous data groups. The three configurations 
evaluated reported RMSE values ranging from 0.73 to 1.88 
mg/L, with coefficients of determination (R²) ranging from 
0.57 to 0.9. In comparison, our regression model obtained an 
R² of 0.798, indicating strong explanatory power but with 
limitations in capturing more complex non-linear dynamics. 

While previous research suggests that neural networks 
offer higher accuracy, our regression model remains 
advantageous due to its simplicity and interpretability. It 
makes it more practical in scenarios where explainability is 
essential. Future improvements could include integrating 
spatially optimized training data and further exploring 
advanced machine learning techniques to enhance predictive 
accuracy. 

D. Dissolved Oxygen Estimation 

Two levels of certainty, 95% and 100%, are used in 
calculating the maximum monthly capacity required. Fig. 6 
shows the quantity of oxygen required for injection in tons 
per month to sustain the desired dissolved oxygen levels in 
the river, with a 95% confidence level. The most significant 
demand for oxygen injection is observed in July, August, 
September, and October. 

Fig. 7 shows the results at the 100% confidence level. This 
is equivalent to the highest level ever recorded in history, 
occurring at a rate of one occurrence per month. Note that the 

major requirement for oxygen injection is estimated at 39.99 
tons per month in September. As the data indicates, July, 
August, and October are the most necessary months for 
oxygen injection. 

 

 
Fig. 6. Oxygen required for injection with a 95% confidence level. 

 

 
Fig. 7. Oxygen required for injection with a 100% confidence level. 

 

The El Quimbo reservoir demonstrates spatial 
heterogeneity in its dissolved oxygen levels, which are 
influenced by depth, distance from inflow points, and 
proximity to the plant’s discharge areas. To account for these 
spatial variations, the model segments the reservoir into 
distinct zones and applies localized calibration parameters to 
each zone. This approach ensures that the model can 
accurately predict oxygen levels across different parts of the 
reservoir. 

E. Comparison with Other ML Models 

While OLS presents a simple, explainable model, it does 
not account for the complex, non-linear, time-related, and 
seasonal dependencies found in actual water ecosystems. 
Recent results indicate that more advanced machine learning 
models may enhance the modeling of these non-linear and 
time-dependent relationships.  

Consider, for example, models using Deep Learning 
Architectures, as proposed by Ma et al. in [31], where the 
authors investigate a combination of Convolutional Neural 
Networks (CNNs) and Gated Recurrent Units (GRUs) with a 
temporal attention mechanism to predict DO in aquaculture 
settings. This model achieved a high coefficient of 
determination (R² = 0.9682) and a low RMSE of 0.0249 mg/L, 
indicating better performance in capturing spatial and 
temporal features of water quality data as compared to our 
model. Similarly, Li et al. [32] introduced a hybrid model 
integrating CNN and Temporal Convolutional Networks 
(TCN) with Symplectic Geometric Mode Decomposition 
(SGMD) to predict DO concentrations. This approach 
effectively modeled temporal trends and seasonal 
information, enhancing prediction accuracy. 

Other authors have explored Ensemble and Hybrid Models 
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to predict DO in water systems. Zhao and Chen [33] proposed 
a hybrid model combining Discrete Wavelet Transform 
(DWT), Kernel Principal Component Analysis (KPCA), 
Grey Wolf Optimization (GWO), and Extreme Gradient 
Boosting (XGBoost) for river DO prediction. This model 
demonstrated significant improvements in prediction 
accuracy across multiple evaluation metrics. Similarly, 
Granata et al. [34] developed ensemble models, including 
Additive Regression with Radial Basis Function (AR-RBF) 
and a stacked Multilayer Perceptron with Random Forest 
(MLP-RF), for forecasting DO in the Mississippi River. 
These models provided accurate predictions, outperforming 
traditional methods. 

Finally, some other techniques have been explored to 
predict DO in water. For example, Yu et al. [35] introduced a 
framework that integrates physical models with recurrent 
neural networks to predict lake DO concentrations. This 
approach dynamically adjusts timesteps to handle significant 
DO fluctuations, enhancing prediction robustness even with 
limited training data. Wu et al. [36] explore explainable 
artificial intelligence techniques for CNN models in 
predicting DO in the Dianchi River basin. By incorporating 
prior physical knowledge, the model provided interpretable 
insights into the factors influencing DO levels. 

While the use of Ordinary Least Squares (OLS) regression 
for predicting Dissolved Oxygen (DO) may appear simple 
when compared to state-of-the-art Machine Learning (ML) 
techniques, the current study must be understood within the 
context of its real-world application. This work represents the 
initial phase of a larger deployment effort at the Quimbo 
Reservoir in Colombia, where the priority is to establish a 
functional and explainable baseline model as part of a real-
time DO monitoring system. 

VI. CONCLUSIONS 

This study estimated the monthly oxygen demand for the 
Magdalena River in Colombia, downstream of El Quimbo’s 
hydropower plant, using a multiple regression approach to 
estimate dissolved oxygen concentrations in the river. The 
model is the first approach to predict the oxygen demand and 
thus calculate the required injection rates from oxygen 
production plants.  

The model’s accuracy is highly dependent on the quality, 
availability, and speed of the input data. The model is fed with 
temporal data, but the information is not loaded in real time.  
Like all models, the DO dynamics model relies on certain 
assumptions and simplifications to make the problem 
tractable. In our case, the model only considers sources of 
oxygen, such as the turbine, bottom discharge, spillway, and 
artificial oxygen injection. Similarly, the model incorporates 
chemical and biological oxygen demand as a single variable. 
Thus, several factors are simplified, including seasonal 
considerations and ecological characteristics. 

This research is the first step in a multi-staged project. As 
data availability and system stability increase, future project 
phases will incorporate and evaluate more complex ML 
models, such as Convolutional Neural Networks (CNNs), 
ensemble models (e.g., XGBoost), and process-guided 
learning frameworks. These will be tested and compared 
against the baseline in terms of predictive performance, 
interpretability, and deployment feasibility. Furthermore, the 

computational models are expected to be integrated with real-
time monitoring systems to enhance the predictive 
capabilities of the model. Continuous data from sensors 
located at various points in the reservoir can be fed into the 
model, allowing for dynamic updates and real-time 
predictions. This integration facilitates proactive 
management of oxygenation processes, allowing timely 
intervention to maintain optimal DO levels.  

As the next stage of this research, advanced models based 
on neural networks are proposed to optimize oxygen injection 
at the El Quimbo hydroelectric power plant. These models 
will enable more accurate predictions of dissolved oxygen 
demands, taking into account hydrological and 
environmental variables, as well as energy efficiency in 
oxygen generation. Additionally, the implementation of a 
Model Predictive Control (MPC) system will be explored to 
dynamically adjust injection rates, minimizing energy 
consumption while ensuring compliance with water quality 
standards. Integrating these advanced techniques with the 
current regression model will lay the foundation for an 
intelligent and autonomous management system capable of 
adapting to seasonal variations and external events, 
ultimately improving the energy and environmental 
efficiency of the project. 

Following the development of the neural network-based 
model, Explainable Artificial Intelligence (XAI) techniques 
are also proposed to interpret and justify the system’s 
predictions. This approach enables an understanding of the 
influence of each variable on the results, thereby 
strengthening the model’s traceability and its integration into 
operational processes. Developing an early warning system 
for critical dissolved oxygen conditions is also proposed 
based on model predictions and real-time data. This will 
enable the anticipation of hypoxia events and the activation 
of preventive actions, thereby improving response capacity 
and reducing environmental risks.     
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