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Abstract—Hydropower plants represent the largest category
of renewable energy sources. However, they have a common
environmental issue: they reduce the amount of dissolved
oxygen in the rivers where they discharge the turbine outflow.
Estimating dissolved oxygen levels in a practical manner
represents an ongoing challenge for energy generation
companies. This study presents a comprehensive model for
predicting dissolved oxygen concentration using statistical
regression techniques. The model is validated using data from
El Quimbo hydropower plant in Colombia to predict dissolved
oxygen in the water discharged into the Magdalena River. The
approach uses Ordinary Least Squares regression to calibrate
the river’s dynamic model of oxygen concentration.

The results show that the model explains 79.8% of the
variability in dissolved oxygen concentration (R?= 0.798). The
estimation of the required oxygen injection indicates that the
highest demand occurs in September, reaching 39.99 tons per
month. Model performance was assessed using statistical
criteria, obtaining an Akaike Information Criterion (AIC) of
873.3 and a Schwarz-Bayesian Information Criterion (BIC) of
882.9. While this model provides a valuable initial tool for
optimizing oxygen injection strategies to mitigate environmental
impacts and ensure adequate water quality in hydroelectric
projects, the paper also discusses future work on implementing
a real-time control system for water oxygenation using more
sophisticated machine-learning models.

Keywords—dissolved oxygen concentration, hydropower
plant, ordinary least squares, water quality, estimation of
dissolved oxygen levels

[. INTRODUCTION

Several physical, chemical, and ecological effects are
associated with dams in hydroelectric generation systems.
Stratification of water and sediment trapping are well-
documented physical changes that induce chemical
alterations such as deoxygenation of deep reservoir water,
phosphorus remobilization, and high hydrogen sulfide (H,S)
concentration [1]. Physical and chemical changes produce
ecological changes in the impounded water and the river.
Those ecological changes include altered thermal regimes,
hypoxic stress, eutrophication, toxicity, oligotrophication,
altered habitats, and shifts in fish communities.
Understanding the dynamics of those changes in water
quality and monitoring and managing their impact is essential
for the environmental sustainability of hydroelectric
generation systems. Several mathematical models are
available to study the behavior of water quality in rivers and
reservoirs [2—4]. However, the implementation of these
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models is hindered by their complexity. Companies and
regulators require simpler models to monitor and manage
water quality.

This paper presents a comprehensive model to predict
water quality using statistical regression techniques, which
enable the accurate modeling of river conditions, the
characteristics of various water sources, and the
characteristics of a hydropower reservoir. The model was
validated using data from the El Quimbo hydropower plant in
Colombia to predict the quality of water discharged into the
Magdalena River.

A. Problem Statement

Dissolved Oxygen (DO) is a key indicator commonly used
to assess water quality and analyze water contamination. It is
essential in characterizing the aquatic environment and shows
the equilibrium between the processes that produce or
consume oxygen [4, 5]. Energy and environmental authorities,
as well as electric generation companies, have explored
several strategies to mitigate dissolved oxygen at hydropower
dams [6].

However, despite the importance of DO management in
hydroelectric dams and the construction boom of
hydroelectric dams in low-latitude developing countries [7],
most research efforts are concentrated in temperate zones.
Furthermore, according to Winton et al. [1], the current
literature contains ambiguity and misinformation regarding
the stratification and mixing behavior of low-latitude
reservoirs. In that study, it is shown that some works claim
that stratification in low-latitude dams is uncommon. In
contrast, others argue that the stratification behavior of
tropical lakes and reservoirs is typical.

In instances where reservoir water exhibits stratification, it
becomes essential to augment the dissolved oxygen levels in
the discharged water and determine the most efficient method
for DO injection.

B. Contribution

This paper presents two contributions. First, the paper
proposes a model to capture the dynamics of oxygen
concentration at a hydropower plant. The model is based on
mass conservation principles and considers oxygen inflows,
outflows, oxygen generation, consumption, and accumulation
at the river downstream of the hydropower plant. Second, we
propose Ordinary Least Squares (OLS) regression techniques
to calibrate the river’s dynamic model of oxygen
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concentration and determine the DO injection efficiently. The
results allow optimization of the amount of oxygen injected
when DO levels are insufficient. Finally, we present a case
study in which we calibrate and assess the model using actual
data from the El Quimbo hydropower plant, employing
various statistical criteria.

The model achieves an uncentered coefficient of
determination of 0.798 (R? = 0.798), indicating that the model
explains approximately 79.8% of the variability in dissolved
oxygen concentration. It also obtains an Akaike Information
Criterion (AIC) of 8733 and a Schwarz-Bayesian
Information Criterion (BIC) of 882.9. The results are
compared with other approaches and discussed as the first
stage of implementing an automatic real-time control system
to improve water quality and maintain optimal dissolved
oxygen levels, thereby preventing negative impacts on the
aquatic ecosystem.

C. Work Organization

In Section II, we present the literature review. In Section
III, we describe the dissolved oxygen model in detail and the
calibration methodology using Ordinary Least Squares
techniques. Section IV discusses the characteristics of the
case study at the Quimbo hydropower plant. Section V
discusses the results, how the model was trained and
calibrated to define the monthly DO concentration in the river
downstream from a hydropower plant, compares the
approach with more sophisticated machine learning proposals,
and discusses lines of future work in the project. Finally,
Section VI presents the conclusions.

II. LITERATURE REVIEW

A.  Impact of Hydropower OD

Concentration

Operations  on

Hydropower projects frequently encounter issues related to
Dissolved Oxygen (DO) concentrations in water [8]. The
construction of a dam results in a reservoir that often
experiences low oxygen levels due to stratification and water
stagnation [1]. To maximize power generation efficiency and
maintain operational capacity during periods of drought,
water directed to the turbine is typically sourced from deeper
reservoir layers, corresponding to the hypolimnion.
Consequently, the water discharged into the outflow channel
likely contains very low DO concentrations, which are then
transported downstream, causing environmental impacts,
particularly on aquatic life.

Several case studies conducted in low-latitude regions
suggest that tropical and subtropical rivers are particularly
vulnerable to thermal and hypoxic impacts resulting from
dams [1]. Cold water discharges have been shown to have
severe effects on fish species in the Dartmouth [9] and Keepit
[10] dams in Australia. Additionally, alterations in the
reproduction process and delays in fish spawning have been
documented in China [11], in Brazil, up to 34 km downstream
from the Tres Marias dam [12], and at the Clanwilliam dam
in South Africa [13].

DO concentration is a critical parameter in water quality
assessment. It is also essential for various aquatic species and
serves as a fundamental environmental indicator in evaluating
river ecosystems [2, 4]. Among the most significant effects of
low DO concentrations on fish are reduced growth rates,

increased stress, tissue hypoxia, diminished swimming
activity, lowered immunity to diseases, elevated mortality
rates, and a decline in the abundance, diversity, and catch
rates of fish in the affected waters [14].

Regarding hypoxia issues, Higgins and Brock [15] found
that 15 out of 19 dams in the southeastern United States
routinely released water with dissolved oxygen
concentrations lower than 5 mg/L, and seven of them with
concentrations less than 2 mg/L. Hypoxic conditions with
oxygen concentrations below 5mg/L were reported at dams
like Bakun in Malaysia [16, 17] and Hume in Australia [18].
Although studies have shown the significant stress hypoxia
causes to various fish species [6], there are few well-
documented field studies on the impact of hypoxia induced
by dams on downstream ecosystems [1].

Several solutions have been developed to address the issue
of anoxia in reservoirs. These solutions include deep oxygen
injection systems, side-stream pumping systems, submerged
contact chambers, turbine ventilation, air injection into
turbines, aerating turbines, surface water pumps, aerating
weirs, and multi-level water intakes [1, 8, 19]. As a result,
multiple management methods exist for controlling dissolved
oxygen content in discharges, with their feasibility varying
depending on the specific characteristics of the dam.

B. Modeling Approaches for DO Prediction

Given the need for accurate prediction of Dissolved
Oxygen (DO) levels and considering that operational
reservoirs are complex hybrid systems subject to high
uncertainty due to natural climatic variability, dynamic
modeling has become an essential tool. These models enable
the simulation of hydrological system behavior and support
the development of simple yet versatile decision-making
instruments. Such tools allow reservoir operators to evaluate

different operational scenarios and anticipate the
consequences of various management strategies [4].
Recently, several proposals have investigated

mathematical models to analyze the dynamics of water
quality in rivers and reservoirs. These models include
AEM3D, QUAL2Kw, LAKE2K, IBER, WASP, MIKE 11,
MIKE 21, QUASAR, HEC-RAS, and MINTEQ [2-4].
However, the effective implementation of these models is a
complex task depending on multiple factors, such as the
availability and quality of input data, the structure and
dynamics of the aquatic system, and the processes being
simulated. Moreover, many of these models were initially
designed for specific contexts, making it difficult to adapt
them to other cases.

Beyond mechanistic approaches, regression methods have
also been employed to predict DO levels [20]. In this regard,
Nacar et al. [21] applied conventional regression techniques,
including linear, power, and exponential models, as well as
more advanced methods, such as Multivariate Adaptive
Regression Splines (MARS) and the TreeNet Gradient
Boosting Machine, to estimate DO concentrations in the
Broad River, South Carolina. Their findings demonstrated
that these models can accurately estimate DO levels across
various monitoring sites and time periods.

With recent advances in data management and artificial
intelligence, numerous studies have explored the prediction
of Dissolved Oxygen (DO) concentrations in aquatic systems
by developing Al and machine learning models [22]. These
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approaches offer notable advantages, including reduced input
data requirements and the ability to effectively model
complex, non-linear relationships [2].

Some of the machine learning techniques used for
modeling water quality, including DO, are Artificial Neural
Networks (ANNs) [23, 24], Recurrent Neural Networks
(RNNs) [25], Random Forest, Support Vector Machines
(SVMs) [26], and Adaptive-Neuro Fuzzy Inference Systems
(ANFIS) [27]. Other researchers have also employed fuzzy
inference systems to model water quality [2, 22].

III. DISSOLVED OXYGEN MODEL AND METHODOLOGY

The main objective of this study is to develop a
comprehensive model that accurately captures the dynamics
of DO within the Quimbo hydropower plant. This model
integrates various factors influencing DO levels, including
inflows, outflows, oxygen generation, consumption, and
accumulation. The selected approach is grounded in mass
conservation principles and is designed to provide actionable
insights for managing and optimizing the oxygenation
process within the plant.

The fundamental principle guiding the modeling approach
is the conservation of mass. This principle states that the
amount of oxygen in a closed system (or within a control
volume in an open system like a river) remains constant
unless influenced by external factors such as inflows,
outflows, generation, and consumption [28, 29].

Moreover, under the balance of matter theory [28], the
variation in oxygen concentration within the system over time,
designated as 3, encapsulates the dynamic characteristics of
the aquatic environment and can be mathematically
represented in the form of a mass balance equation for a river
system, as illustrated in Eq. (1).

B = pin — Pour + Og -0 (D

In the equation, p;, is the amount of oxygen entering the
system from various sources, including atmospheric diffusion
and tributary inputs. p,,; represents the amount of oxygen
leaving the system, primarily through water flow downstream.
0, includes oxygen injected by the plant through mechanical
means and oxygen added due to natural processes like
turbulence from water movement. O, accounts for biological
and chemical processes, such as the decomposition of organic
and inorganic matter, which consumes oxygen.

A. Input Data

Sources of Oxygen Oxygen Dynamics and measurement at MGE1

Water Flow from Turbine
Water Flow from Spillway
. Oxygen
input
Water Flow from Bottom
Discharge

MGE?1: Data Collection
and Measurement
Point 1

Oxygen
output

Chemical and Biological Oxygen
Demand (CBOD)

Measurement

Oxygen Injection Mechanism

—_—
Fig. 1. Oxygen dynamics and measurement at MGEI.
Based on the principles of mass balance and mass

conservation, the input data for the model can be derived from
various sources, including the consumption of oxygen within

the system and the corresponding flow rates. These may
encompass the water within the reservoir, the water at the
spillway, the turbine outflow, the downstream river, and any
artificial source of oxygen injection, as illustrated in Fig. 1.
The data must be filtered and classified according to a typical
time window.

B. Dissolved Oxygen Model

The model for the DO dynamics in the water in a
hydropower plant can be formulated as a partial differential
equation based on the rate of oxygen concentration change
over time, as shown in Eq. (2).

dc
i B1Yt=10:Qc + B2 Y51 0pQp +

2
+[33 Zgzl Gst + BALV —CDO ( )

where, f51,:+, B, the calibrated coefficients represent the
efficiency of oxygen transfer for the turbine, bottom
discharge, spillway, and artificial oxygen injection,
respectively. The parameters g;, 05, , and o, represent the
oxygen concentration (mg/L) of the water flow from the
turbine, the bottom discharge, and the spillway of the
hydropower plant, respectively. Q;, @p, and Qg are water
flow rates (m3/s) from the turbine, the bottom discharge, and
the spillway. CDO is the Chemical Demand of Oxygen (kg/d)
required by biological and non-biological processes within
the system, and y is the oxygen plant’s injection rate (kg/d).

Eq. (2) models the dynamic interaction between the inflow
and outflow of oxygen, its generation and consumption
within the system, and the resulting accumulation or
depletion of DO over time.

Each variable exerts a distinct influence on the overall
oxygen concentration. For instance, turbine flow rates
contribute to the mixing of water and oxygen. Higher flow
rates typically enhance mixing, potentially leading to
increased oxygen levels. It is important to note that the
bottom discharge flow rate influences the oxygen content at
the bottom of the reservoir, where oxygen levels are often
lower due to decomposition processes. Similarly, the spillway
flow rate affects the oxygen levels at the surface and
contributes to the overall oxygen dynamics through mixing
and aeration.

Conversely, the oxygen concentrations at turbines indicate
the oxygen levels in the water being released from these
turbines. These measurements are essential for calibrating the
model. While bottom discharge oxygen -concentration
provides insights into the oxygen levels in the deeper parts of
the reservoir, spillway oxygen concentration reflects the
surface oxygen levels.

Chemical and Biological Oxygen Demand represents the
total oxygen required by chemical and biological processes
within the water body. Higher CDO values indicate higher
consumption of oxygen, which can result in lower overall
oxygen levels if not adequately compensated for by
generation and inflow. Efficiency coefficients are specific to
the system’s components (turbines, spillways, and plant) and
represent the effectiveness with which oxygen is transferred
into the water. Calibration of these coefficients is essential for
accurate modeling.

C. Model Calibration
Calibration can be conducted using OLS regression to
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guarantee the model’s precision. Concretely, we adjust the
model coefficients based on observed data. The process has
the following steps: data preparation, initial parameter
estimation, regression analysis, and validation. We now
explain each step in detail.

1) Data preparation

It is well known that data collection processes are
susceptible to systematic and random errors. As a result, the
raw data collected may not be entirely accurate and should
not be used without careful consideration. Data preparation is
critical in the regression algorithms to ensure data accuracy
and quality.

Data preparation is collecting, labeling, and cleaning raw
data to ensure its suitability for utilization in linear regression
[30]. We have conducted a series of tests to confirm that the
input data falls within the specified range, is in the correct
format, and has been entered consistently and logically. We
also verified that each field in the database has a unique entry.
Fig. 2 shows the data distribution for each variable used in the
model. These histograms show the average value in red, the
25th percentile in black, and the 75th percentile in yellow.

~ Sum of flows ~ OD in spillway
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> P :
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2 P :
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Fig. 2. Histograms of input variables.

2) Parameters estimation

Initial parameter estimation for the model coefficients is
derived from empirical observations and theoretical
considerations.

3) Multiple regression approach

Simple linear regression is an effective method for
forecasting a response based on a single predictor variable. In
many cases, such as DO estimation, the dependent variable is
influenced by more than one independent variable. Rather
than creating a separate simple linear regression model for

each predictor, it is preferable to extend the simple linear
regression model so that it can directly accommodate
multiple predictors. This can be achieved by assigning a
distinct slope coefficient to each predictor in a single model.
In general, if there are p distinct predictors, the multiple
linear regression model can be formulated as follows:

Y = Bo+ Bix1 + Poxy + Psxz + € 3)

In this context, x; represents the jth predictor, while f;
quantifies the association between that variable and the
dependent variable y. The coefficient f; is interpreted as the
average effect on y of a one-unit increase in x;.

According to Egs. (2) and (3), the estimated dissolved
oxygen in the downstream region of the hydropower plant can
be formulated as a multiple linear regression problem, as
illustrated in Eq. (4).

y= Zﬁﬂé{[ﬁ Y1e10:Qe + B2 Xh-10,Qp +
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where, %{_10,Q;, X5=1 050, X3=105Qs, and y represent
the predictors py, p2, P3, and p,, respectively. The regression
coefficients f5,, 1, B3, and 5, can be estimated using
ordinary least squares regression, as shown in Eq. (5).

||y - Zﬁ:lé{ﬁl Yie10:Qc + B2 Xh-105Qp +
+ﬁ3 Z§=1 ast + ﬁ4y - CDO}HZ

min
B1.B2.83.84 )

IV. CASE STUDY

The proposed methodology has been applied to the El
Quimbo Hydropower Plant, located in Colombia, in the upper
Magdalena River basin. The dam that has generated the
reservoir of the El Quimbo Hydropower Power Plant is
situated in the canyon formed by the Magdalena River at the
rocky ridge of the Gualanda and Superior Formation at the El
Quimbo site, 1300 m upstream of the confluence of the
Magdalena and Paez rivers, as shown in Fig. 3.

%

Fig. 3. Location of the El Quimbo Hydropower Plant in Huila, Colombia.

The hydropower consists of a dam, an auxiliary closure
dam, a detour system, a spillway, a conveyance system, and
a powerhouse at the foot of the dam. The reservoir has a
length of 55 km at the maximum normal operating level
(elevation 720 m above sea level), a maximum width of 4 km,
and an average width of 1.4 km. The inundation area would
be 8250 ha, and the total reservoir volume 3205 hm? and the
useful storage volume is 1824 hm3. The powerhouse is
shallow at the foot of the dam, with two vertical-axis Francis
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turbines and a rated power of 200 MW per machine, working
with a net head of 122 m and a flow of 187.5 m?/s. The total
installed capacity is about 400 MW.

V. RESULTS AND DISCUSSION

A. Input Data

The veracity of a model depends on the quality and
availability of the input data. It is, therefore, essential to
ensure that data is collected continuously and with precision
to maintain the model’s reliability.

The data utilized in the modeling process were obtained
from various monitoring points, including Spillway, Turbine
Flow, and Bottom Discharge. Fig. 4 shows the locations of
the MGE1 points where CDO is measured.

Fig. 4. Measurement and data collection points.

The Quimbo reservoir exhibits spatial heterogeneity in its
DO levels, influenced by depth, distance from inflow points,
and proximity to the plant’s discharge areas. The model
accounts for these spatial variations by segmenting the
reservoir into distinct zones and applying localized
calibration parameters. This approach ensures that the model
can accurately predict oxygen levels across different parts of
the river.

B. Normality Tests

Normality tests can determine whether a normal
distribution fits a data set and calculate the probability that a
random variable underlying the data set is normally
distributed. Two types of normality tests have been used:
normality analysis by hypothesis testing and quantile
comparison plots.

Shapiro-Wilk, D’Agostino’s K-squared, Jarque-Bera,
Lilliefors, and Anderson-Darling methods were used to test
the normality hypothesis. In all these methods, the p-value is
greater than the predefined significance level, so the null
hypothesis cannot be rejected, and the data have a normal
distribution pattern.

The quantile comparison plot (qqplot) represents the
quantiles of the data distribution against the theoretical
quantiles that follow a normal distribution with the same
mean and standard deviation as the measured data. Fig. 5
shows this comparison, where the data are aligned close to
the diagonal of the plot, which allows for confirmation that
the data follow a normal distribution.

C. Ordinary Least Squares Regression

Ordinary least squares regression was used to calibrate the
river’s dynamic model of oxygen concentration. This process

involved fitting the model coefficients to the observed data to
optimize the model’s accuracy in predicting oxygen
concentration.

QQ Plot

Ordered data values
o

-2

—4

—6

=2 -1 0 1 2
Theoretical quantiles

Fig. 5. Normal Quantile-Quantile plot.

Table 1 presents the model results using OLS regression
with a dataset of 183 observations. The uncentered coefficient
of determination (R?> = 0.798) indicates that the model
explains approximately 79.8% of the variability in dissolved
oxygen concentration, suggesting an acceptable fit to the data.
Additionally, the Akaike Information Criterion (AIC) and the
Schwarz Bayesian Information Criterion (BIC) have values
of 873.3 and 882.9, respectively.

Table 1. OLS regression results

Parameter Value
Dep variable y
Model OLS
Method Least Squares
No. Observations 183
DF Residuals 180
DF Model 3
Covariance Type Non-robust
R-squared (uncentered) 0.798
Adj. R-squared (uncentered) 0.798
F-statistic 237.7
Prob (F-statistic) 2.4E-62
Log-Likelihood -433.6
AIC 873.3
BIC 882.9

An R? of 0.798 indicates that the model explains a
significant portion of the variance in dissolved oxygen
concentration. Still, it also suggests that approximately 20.2%
of the variability remains unexplained by the included
predictors. This unexplained variation could be attributed to
external factors, such as seasonal climate fluctuations,
changes in oxygen demand, or measurement inaccuracies that
are not directly addressed in the model. Future work may
incorporate more sophisticated machine learning techniques
into the project, as well as other improvements to the current
model.

The evaluation metrics comprehensively assess the
model’s fit to the observed data. The high R-squared values



International Journal of Environmental Science and Development, Vol. 17, No. 1, 2026

indicate that the model explains a sizable portion of the
variability in oxygen levels. Furthermore, the statistical
significance of the model coefficients and the F-statistics
provide additional support for the robustness of the model.

Table 2 shows the value of the coefficients 3, B3, and
B, obtained from the least squares regression. Note that all the
coefficients are statistically significant, as indicated by their
p values, p < 0.05. This suggests that the data provide
sufficient evidence to reject the null hypothesis for the entire
population, thereby indicating a non-zero correlation.
Consequently, changes in the independent variable are
associated with changes in the dependent variable at the
population level. In the case of ,, a value of 1 is assumed
because of its negligible impact on the dissolved oxygen
concentration.

Table 2. Coefficient from OLS regression

Coef  Value Std err T p > |t| 10.025 0.975]|
By 1.3905 0.206 6.746 0.000 0.984 1.797
B 1.9359 0.129 14.972 0.000 1.681 2.191
Ba 11.6412 1.009 11.536 0.000 9.650 13.632

When comparing our regression model to approaches used
in previous studies, we found no dissolved oxygen (DO)
models based on actual data applied to hydroelectric projects
that consider both the river and the reservoir. Moreover, many
studies focus on machine learning techniques, which, unlike
our regression approach, assume a linear relationship
between predictors and dissolved oxygen (DO) and are better
suited for capturing complex non-linear interactions.

Csabragi et al. [10] estimated the oxygen concentration in
the Tisza River using Radial Basis Function Neural Networks

(RBFNN) and General Regression Neural Networks (GRNN).

The results showed that machine learning techniques,
particularly neural networks, achieved superior predictive
performance when trained on carefully selected,
homogeneous data groups. The three configurations
evaluated reported RMSE values ranging from 0.73 to 1.88
mg/L, with coefficients of determination (R?) ranging from
0.57 to 0.9. In comparison, our regression model obtained an
R? of 0.798, indicating strong explanatory power but with
limitations in capturing more complex non-linear dynamics.

While previous research suggests that neural networks
offer higher accuracy, our regression model remains
advantageous due to its simplicity and interpretability. It
makes it more practical in scenarios where explainability is
essential. Future improvements could include integrating
spatially optimized training data and further exploring
advanced machine learning techniques to enhance predictive
accuracy.

D. Dissolved Oxygen Estimation

Two levels of certainty, 95% and 100%, are used in
calculating the maximum monthly capacity required. Fig. 6
shows the quantity of oxygen required for injection in tons
per month to sustain the desired dissolved oxygen levels in
the river, with a 95% confidence level. The most significant
demand for oxygen injection is observed in July, August,
September, and October.

Fig. 7 shows the results at the 100% confidence level. This
is equivalent to the highest level ever recorded in history,
occurring at a rate of one occurrence per month. Note that the

major requirement for oxygen injection is estimated at 39.99
tons per month in September. As the data indicates, July,
August, and October are the most necessary months for
oxygen injection.

Tons of oxygen

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Fig. 6. Oxygen required for injection with a 95% confidence level.
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Fig. 7. Oxygen required for injection with a 100% confidence level.

The El Quimbo reservoir demonstrates spatial
heterogeneity in its dissolved oxygen levels, which are
influenced by depth, distance from inflow points, and
proximity to the plant’s discharge areas. To account for these
spatial variations, the model segments the reservoir into
distinct zones and applies localized calibration parameters to
each zone. This approach ensures that the model can
accurately predict oxygen levels across different parts of the
Teservoir.

E. Comparison with Other ML Models

While OLS presents a simple, explainable model, it does
not account for the complex, non-linear, time-related, and
seasonal dependencies found in actual water ecosystems.
Recent results indicate that more advanced machine learning
models may enhance the modeling of these non-linear and
time-dependent relationships.

Consider, for example, models using Deep Learning
Architectures, as proposed by Ma et al. in [31], where the
authors investigate a combination of Convolutional Neural
Networks (CNNs) and Gated Recurrent Units (GRUs) with a
temporal attention mechanism to predict DO in aquaculture
settings. This model achieved a high coefficient of
determination (R* = 0.9682) and a low RMSE 0f 0.0249 mg/L,
indicating better performance in capturing spatial and
temporal features of water quality data as compared to our
model. Similarly, Li et al. [32] introduced a hybrid model
integrating CNN and Temporal Convolutional Networks
(TCN) with Symplectic Geometric Mode Decomposition
(SGMD) to predict DO concentrations. This approach
effectively modeled temporal trends and seasonal
information, enhancing prediction accuracy.

Other authors have explored Ensemble and Hybrid Models
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to predict DO in water systems. Zhao and Chen [33] proposed
a hybrid model combining Discrete Wavelet Transform
(DWT), Kernel Principal Component Analysis (KPCA),
Grey Wolf Optimization (GWO), and Extreme Gradient
Boosting (XGBoost) for river DO prediction. This model
demonstrated significant improvements in prediction
accuracy across multiple evaluation metrics. Similarly,
Granata et al. [34] developed ensemble models, including
Additive Regression with Radial Basis Function (AR-RBF)
and a stacked Multilayer Perceptron with Random Forest
(MLP-RF), for forecasting DO in the Mississippi River.
These models provided accurate predictions, outperforming
traditional methods.

Finally, some other techniques have been explored to
predict DO in water. For example, Yu ef al. [35] introduced a
framework that integrates physical models with recurrent
neural networks to predict lake DO concentrations. This
approach dynamically adjusts timesteps to handle significant
DO fluctuations, enhancing prediction robustness even with
limited training data. Wu et al. [36] explore explainable
artificial intelligence techniques for CNN models in
predicting DO in the Dianchi River basin. By incorporating
prior physical knowledge, the model provided interpretable
insights into the factors influencing DO levels.

While the use of Ordinary Least Squares (OLS) regression
for predicting Dissolved Oxygen (DO) may appear simple
when compared to state-of-the-art Machine Learning (ML)
techniques, the current study must be understood within the
context of its real-world application. This work represents the
initial phase of a larger deployment effort at the Quimbo
Reservoir in Colombia, where the priority is to establish a
functional and explainable baseline model as part of a real-
time DO monitoring system.

VI. CONCLUSIONS

This study estimated the monthly oxygen demand for the
Magdalena River in Colombia, downstream of El Quimbo’s
hydropower plant, using a multiple regression approach to
estimate dissolved oxygen concentrations in the river. The
model is the first approach to predict the oxygen demand and
thus calculate the required injection rates from oxygen
production plants.

The model’s accuracy is highly dependent on the quality,
availability, and speed of the input data. The model is fed with
temporal data, but the information is not loaded in real time.
Like all models, the DO dynamics model relies on certain
assumptions and simplifications to make the problem
tractable. In our case, the model only considers sources of
oxygen, such as the turbine, bottom discharge, spillway, and
artificial oxygen injection. Similarly, the model incorporates
chemical and biological oxygen demand as a single variable.
Thus, several factors are simplified, including seasonal
considerations and ecological characteristics.

This research is the first step in a multi-staged project. As
data availability and system stability increase, future project
phases will incorporate and evaluate more complex ML
models, such as Convolutional Neural Networks (CNNs),
ensemble models (e.g., XGBoost), and process-guided
learning frameworks. These will be tested and compared
against the baseline in terms of predictive performance,
interpretability, and deployment feasibility. Furthermore, the

computational models are expected to be integrated with real-
time monitoring systems to enhance the predictive
capabilities of the model. Continuous data from sensors
located at various points in the reservoir can be fed into the
model, allowing for dynamic updates and real-time
predictions.  This integration  facilitates  proactive
management of oxygenation processes, allowing timely
intervention to maintain optimal DO levels.

As the next stage of this research, advanced models based
on neural networks are proposed to optimize oxygen injection
at the El Quimbo hydroelectric power plant. These models
will enable more accurate predictions of dissolved oxygen
demands, taking into account hydrological and
environmental variables, as well as energy efficiency in
oxygen generation. Additionally, the implementation of a
Model Predictive Control (MPC) system will be explored to
dynamically adjust injection rates, minimizing energy
consumption while ensuring compliance with water quality
standards. Integrating these advanced techniques with the
current regression model will lay the foundation for an
intelligent and autonomous management system capable of
adapting to seasonal variations and external events,
ultimately improving the energy and environmental
efficiency of the project.

Following the development of the neural network-based
model, Explainable Artificial Intelligence (XAI) techniques
are also proposed to interpret and justify the system’s
predictions. This approach enables an understanding of the
influence of each variable on the results, thereby
strengthening the model’s traceability and its integration into
operational processes. Developing an early warning system
for critical dissolved oxygen conditions is also proposed
based on model predictions and real-time data. This will
enable the anticipation of hypoxia events and the activation
of preventive actions, thereby improving response capacity
and reducing environmental risks.
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