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Abstract—Observations about inadequacy of General 
Climate Models (GCMs) of the sixth phase of Climate Model 
Intercomparison Project (CMIP6) in simulating different 
climatological variables in several regions of the world 
prompted the examination of the performance of GCMs of the 
preceding fifth phase (CMIP5) phase vis-à-vis those of CMIP6 
in simulating mean and extreme temperatures over a 
physiographically diverse mainland India. Selected statistics of 
daily temperature, simulated at 0.25×0.25 grid by 30 GCMs of 
CMIP6 and 28 of CMIP5, were compared with those of 
reference data of 27 years for performance assessment of the 
two phases. Significance Score, Mean Absolute Error and Index 
of Agreement, were applied to explore the spatial distribution of 
the best-performing model of each CMIP phase, and an 
innovative rank-based approach was devised and Taylor 
diagrams were used to examine the spatially aggregated 
performance of the models. GCMs of both CMIP6 and CMIP5 
were found as being valuable in simulating one or the other 
temperature statistic in one or the other part of the country with 
no indication of one phase being consistently better than the 
other. The results of this extensive study shows that, the focus of 
development of each CMIP phase being unique, a model of 
CMIP5 could also have the potential of outperforming the 
models of CMIP6 in simulating climate variables, and that, in 
the case of mainland India, a GCM of either of the two phases 
would be appropriate for reliable projection of location-specific 
future temperature under different climate change scenarios. 

Keywords—Coupled Model Intercomparison Project Phase 5 
(CMIP5), Coupled Model Intercomparison Project Phase 6 
(CMIP6), General Climate Model (GCM), temperature, 
simulation, India  

I. INTRODUCTION

A changing climate impacts a region’s 
hydrometeorological phenomena, water resources, 
agriculture, energy, human health and other ecologically and 
socio-economically relevant sectors [1–15]. India is a large 
and populous region of the world with its physiographical 
and hydrometeorological diversities influencing the 
spatiotemporal pattern of occurrence of climatological 
variables across the country’s vast expanse rendering the 
country vulnerable to impacts of climate change [16–18]. 
Reducing the vulnerabilities by offsetting the detrimental 
impacts of climate change through adaptation and mitigation 
requires the understanding of the state of climate, the reliable 
projection of the future climate, and a scientific assessment of 
the likely impacts of the change. The extensivity of climate, 
the variability of its components, the complexity of 
component-interactions and the current state of technological 
development make it compelling to have recourse to climate 
models to meet the above requirements.  

The Coupled Model Intercomparison Project (CMIP) 
under the World Climate Research Programme (WCRP) 

provides outputs from an extensive collection of coupled 
climate and Earth System models, and aims at understanding 
the “past, present and future climate changes arising from 
natural, unforced variability or in response to changes in 
radiative forcing in a multi-model context” [19]. Beginning 
in the year 2013, Coupled Model Intercomparison Project 
Phase 6 (CMIP6) is the latest phase of development of the 
CMIP project [20] that, according to WCRP-CMIP 
CMIP6_CVs version: 6.2.58.54 [21], has participations from 
modelling groups from 49 Institutions across the world, and 
includes 132 General Climate Models (GCMs) released over 
the period from 1989 to 2022. CMIP6 provided global 
climate model data assessed in the Sixth Assessment Report 
of the Intergovernmental Panel on Climate Change (IPCC) 
[22, 23]. The preceding fifth phase of the CMIP, i.e., CMIP5, 
during the period from 2010 to 2014 included more than 50 
GCMs, and served as a basis for the IPCC’s Fifth Assessment 
Report [24, 25]. Whereas CMIP5 explored earth system 
processes, such as, carbon cycle, aerosol, biogeochemistry, 
dynamical vegetation components, cloud feedback, etc. 
through long-term and short-term integration experiments 
[24, 26, 27], CMIP6 aimed at exploring the earth system’s 
response to forcing, the origins and consequences of 
systematic model biases, and the future changes in climate 
under internal climate variability, predictability and 
uncertainties in scenarios [20, 28]. However, because of the 
focus of development of the two phases being different, it 
emerged from several studies of comparison of the models of 
CMIP6 and CMIP5 applied either individually or as Multi 
Model Ensembles (MMEs) across countries and regions of 
the world that the CMIP6 models did not perform 
consistently better than the CMIP5 models in climate 
simulation. In simulating extreme daily temperature and 
precipitation across the global landmass, Li et al. [29] did not 
find advantage of CMIP6 models over CMIP5 models in 
simulating total precipitation and continuous dry days, and 
observed that, except for continuous dry days, the uncertainty 
estimation by CMIP6 models in simulating total precipitation 
and very wet days were larger than those by CMIP5 models; 
Wehner et al. [30] found that, individually, no CMIP5 or 
CMIP6 model could be identified as being distinctly superior; 
Fan et al. [31] reported improved performance of some 
individual CMIP6 models in simulating spatial pattern of 
summer days, tropical nights, cold spell duration, and diurnal 
temperature range amongst 16 indices of temperature 
extremes relative to CMIP5 models and relatively 
unsatisfactory performance of the MMEs of the both phases 
in simulating the spatial patterns of duration and percentile 
indices; Chen et al. [32] noted a general improvement of 
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CMIP6 models in simulating temperature and precipitation 
extremes and their trend patterns compared to observations, 
but a limited or even decreased improvement in regard to the 
spread of some individual CMIP6 models in comparison with 
their predecessors; and Kim et al. [33] concluded that CMIP6 
models generally captured the patterns of temperature 
extremes with limited improvements in comparison with 
their CMIP5 counterparts, amongst others.  

In regard to assessing the relative performance of different 
CMIP phases for simulating climate variables over India’s 
landmass, studies of relative performance of CMIP6 and 
CMIP5 Models are rather limited, and the scenario of studies 
with models of the previous CMIP phases is no better (e.g., 
[34] and [35] on comparison of models of CMIP5 and those 
of the third phase of the CMIP, i.e., CMIP3; [36–40] on 
application of models of CMIP6 phase alone; and [35, 36, 
41–44] on the use of individual GCMs of the pre-CMIP6 
phases). This sparsity of studies of India’s climate, although 
an integral and important component of the global climate 
system, is generally attributable to the sparsity of good 
quality data of relatively high spatiotemporal resolution over 
reasonably long periods of time, and inaccuracy of estimation 
of the climate sub types across the diverse topography of 
India by climate models [35, 40]. In regard to the comparison 
of CMIP6 and CMIP5 models applied to climate variables 
over India, Gusain et al. [44] found by using APHRODITE 
(Asian Precipitation - Highly-Resolved Observational Data 
Integration Towards Evaluation of Water Resources) for 
observational data that the spatial improvement of CMIP6 
models over CMIP5 models in simulating Indian Summer 
Monsoon Rainfall (ISMR) was inconsistent. Salunke et al. 
[45] found that CMIP6 Multi Model Means performed better 
than the CMIP5 counterparts in simulating spatial 
distribution of seasonal mean precipitation and in capturing 
precipitation trends, but could not simulate the overall 
decreasing trend in the observed data of India Meteorological 
Department (IMD). Dutta et al. [46] analyzed the global 
teleconnections of the Indian Summer Monsoon clouds using 
CMIP6 and CMIP5 MMEs and found improvement in 
seasonal mean bias of total cloud fraction and rainfall over 
the Asian Summer Monsoon Region from CMIP5-MME to 
CMIP6-MME. Sreekala et al. [47] found poor skill of the 
models of CMIP6 and CMIP5 and of the respective MMEs in 
simulating northeast monsoon rain over southern peninsular 
India.  

Conspicuously, most of the studies of the state of climate 
and climate change impacts over India focus on the relative 
performance of GCMs in simulating different aspects of the 
ISMR. This is not surprising because of more than 80% of the 
country’s annual precipitation necessary for the sustenance of 
its population of more than one fifth of that of the world being 
derived from the ISMR, and the country’s seasonal rainfall 
being highly crucial for its agriculture and many other facets 
of life [40, 48]. However, temperature being an influencer of 
climate systems, an important variable of all fields of natural 
science, and an indicator of global warming and associated 
climate change, the need to study different aspects of 
temperature is also highly important. Accordingly, the 
objective of this study was set to explore the applicability of 
GCMs of CMIP6 and CMIP5 in simulating the mean, 
maximum and minimum temperatures and their extremes 

across mainland India (excluding the islands) at 
spatiotemporal resolutions of 0.25°×0.25° grids and 
comparing the relative performance of the two CMIP phases. 

For comparing performance of different GCMs, historical 
series of observed data of selected variables are required at 
high spatial and temporal resolutions. In the case of India, the 
India Meteorological Department (IMD) provides 
observational data of maximum and minimum temperature in 
1.0°×1.0° grids covering the entire country at daily timesteps 
[49]. However, in order to avail reference data at a finer 
spatial resolution of 0.25°×0.25° grid, reanalysis data that 
assimilate multiple observational data of the atmosphere, 
land and ocean into a forecast model yielding a ‘dynamically 
consistent estimate’ of the state of climate at different 
timesteps [50] was considered as being substitutes of 
observational data. Accordingly, noting from an earlier study 
by [51] that reanalysis data of the European Centre for 
Medium-Range Weather Forecasts (ECMWF) of the fifth 
generation, i.e. ECMWF Re-Analysis 5 (ERA5), performed 
better amongst five reanalysis datasets in representing 
monsoon precipitation, maximum temperature, 
evapotranspiration and soil moisture over India, ERA5 data 
of surface temperature were adopted in this study as reference 
data for meeting the objectives of this study.   

In order to assess the performance of climate simulation 
models, several stand-alone indices and composite measures 
were considered by researchers. Each of these criteria 
assesses either the probabilistic or the deterministic or the 
trend characteristics of the series of data being simulated. The 
choice of suitable criteria for a study depends on the 
interpretability of these criteria in matching the objective(s) 
of the study. In this study, the Significance Score [41, 52–59] 
based on Probability Density Function (PDF), the 
residual-based Mean Absolute Error and Index of Agreement 
[35, 60–65], and the multi-measure-based Taylor diagram 
[27, 30, 62, 66–75] were used, and an innovative rank-based 
approach was devised for evaluating the performance of 
different climate models in representing both probabilistic 
and deterministic aspects of temperature.  

II. STUDY AREA AND DATA 

This study covers the mainland India (excluding islands) 
lying between 8°4' and 37°6' North latitude and 68°7' and 
97°25' East longitudes, and bounded by the Bay of Bengal, 
the Arabian Sea and the Indian Ocean on the south and the 
Himalayas Mountain ranges on the north. The elevation of 
the land ranges from mean sea level to more than 8200 meter 
as shown in Fig. 1(a), and comprises mountains and hills, 
riverine plains, coastal areas and desert. Climatologically the 
land is divided into five zones, namely hot-dry, warm-humid, 
composite, temperate and cold as exhibited in Fig. 1(b) by 
following the National Building Code of India [76]. The 
geographic, topographic, and climatic diversities necessitated 
the mainland India to be divided into six 
hydrometeorologically homogeneous zones and 25 subzones 
(excluding the Andaman and Nicobar Island which is 
considered as being the seventh zone and the 26th subzone) as 
described in the Flood Estimation Reports by the Central 
Water Commission (CWC), e.g., [77], of India and other 
literatures, e.g., [78]. A total of 4964 grid points at 
0.25°×0.25° grids covers the mainland India, and are 
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considered for this study. The long-term average temporal 
variation of daily maximum temperature (Tmax), daily mean 
temperature (Tmean) and daily minimum temperature (Tmin) 
aggregated month-wise across these grid points in degree 
Celsius (°C) unit over the period from 1979 to 2005, and the 
box and whisker plot showing the range, dispersion and 
skewness of the spatially distributed temperature variables 
are presented in Fig. 1(c) and 1(d) respectively. Whereas the 
temporal variation shows seasonality of temperature with the 
peak occurring in the month of May preceding the onset of 
ISMR and the minimum occurring in January, the 
box-and-whisker plot shows a large variation of temperature 
across the country, obviously imposing challenge to GCMs in 

simulating the past temperature.  
For the study, temperature outputs from GCMs of CMIP6 

and CMIP5 were sourced from the data portals of WCRP 
hosted by Lawrence Livermore National Laboratory of the 
US Department of Energy, and GCMs were selected based on 
the concurrent availability of the three temperature variables 
Tmax, Tmean and Tmin as outputs of the GCMs. Accordingly, 
temperature outputs of 30 GCMs of CMIP6 and 28 of CMIP5 
were downloaded in NetCDF format for a 27-year period 
from 1979 to 2005 for further processing. The details of the 
selected GCMs of CMIP5 and CMIP6 are provided in 
Annexures A-1 and A-2 respectively.  

 

 
Fig. 1. Topographic and climatic characteristics of mainland India (a) Elevation (b) Climatic zones (as per National Building Code, 2016) (c) Monthly 

variation of Tmax, Tmean and Tmin and (d) Range of variation of Tmax, Tmean and Tmin. 
 

For simulation, the reference data of Tmax, Tmean and Tmin for 
concurrent period are obtained in degree Kelvin unit (k) and 
converted to Celsius °C from ‘2m temperature’ hourly data at 
0.25°×0.25° grids from the ERA5 dataset available at the 
Copernicus Climate Change Service Climate Data Store of 
the ECMWF). These data provide air temperature at 2 m 
above the surface of land, and are stated as being produced by 
combining ‘vast amounts of historical observations into 
global estimates using advanced modelling and data 
assimilation systems’ ‘into a globally complete and 
consistent dataset using the laws of physics’ [79]. 

III. METHODOLOGY 

The GCM-simulated data were re-gridded to 0.25°×0.25° 
coordinates using Climate Data Operators (CDO) software 
tool [80]. For the series of reference data at each grid point of 
the 0.25°×0.25° grids, the daily maximum and minimum 
temperatures were derived from the hourly data of each day, 
and the daily mean temperature was computed by taking 
average of the 24-h values of a day.  

After data processing, the simulation-performance of each 
of the CMIP6 and CMIP5 models across mainland India was 
assessed by adopting three approaches. In the first approach, 
the degree of match of the PDFs, the degree of temporal 
correspondence and the conservation of descriptive statistics 
of the reference and GCM-simulated data were examined by 
separately considering data on annual, i.e., whole-year, basis, 
and on the basis of four seasons of three months each, i.e., 
monsoon or summer (JJA), post-monsoon (SON), winter 
(DJF) and pre-monsoon (MAM) by representing each month 
by the first letter of its name. For comparing the PDFs, the 
Significance Score (SScore) given by equation (1) was used. 

 

𝑆  ∑ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑍 , 𝑍                         (1) 

Here M is the number of bins used to calculate the PDFs, 
and Zs and Zr are the frequencies in a given bin of the 
GCM-simulated and reference data respectively. As 
suggested by [52] for temperature variables, a bin size of 
0.5°C is adopted. The value of this score equal to 1 implies a 
perfect simulation. 

For assessing the simulation performance of deterministic 
characteristics, the Mean Absolute Error (MAE) and Index of 
Agreement (IoA) given by equations (2) and (3) were 
adopted. 

 𝑀𝐴𝐸 ∑ |𝑦 𝑟 |                                (2) 

𝐼𝑜𝐴 1
∑

∑ | | | |
                           (3) 

where yi and ri are the GCM-simulated and reference data of 
the ith day, and 𝑟  and N are the mean and the number of 
reference data respectively at each grid point. Here MAE 
provides a measure of average error between simulated and 
reference data and IoA yields a measure of average error 
relative to a combination of the systematic and the 
unsystematic components of the average error set in the 
format of variance. Whereas the MAE is dimensioned with no 
upper bound, the IoA is dimensionless and bounded by 0 and 
1. A smaller value of MAE and a larger value close to unity of 
IoA indicate a better representation of the deterministic 
characteristics of a variable by a model. 

Based on the values of SScore, MAE and IoA applied to the 
series of annual data of 27 years for each temperature 
variable at each grid point, the 58 GCMs of both CMIP 
phases were ranked by separately assigning rank 1 to the 
GCM attaining the highest values of SSocre and IoA and the 
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lowest value of MAE. From the highest rank, i.e., rank 1, of 
the GCM, the CMIP phase associated with that GCM could 
be identified for each measure of performance at each grid 
point, the spatial distribution of the better-performing CMIP 
phase was explored. After the consideration of annual data, 
the seasonal values of temperature were likewise considered 
to explore season-wise performance of simulation by the 
GCMs. 

Subsequently, for exploring the spatially averaged 
performance over the study area by considering annual data, 
the values of SScore, MAE and IoA were individually averaged 
across all grid points for each GCM from which the GCMs 
were ranked for each measure for each temperature variable. 
The performance of the GCMs based on an overall 
performance for each temperature variable was then explored 
by adding the three equally-weighted ranks of each GCM 
obtained from SScore, MAE and IoA, thereby creating a ranked 
list of the GCMs based on the combined rank having 3×1 (=3) 
and 58×3 (=174) as the smallest and the highest possible 
values respectively. From this list, the spatially averaged 
performance of the GCMs and the corresponding CMIP 
phase for each of the Tmax, Tmean and Tmin variables over 
mainland India was assessed. 

For exploring the performance of the GCMs in simulating 
the whole range of temperature over mainland India, the 
ranks of the GCMs in the ranked list obtained in the 
preceding step were further aggregated by adding the values 
of the ranks of each GCM for each of the Tmax, Tmean and Tmin 
variables. A final ranked list having 3×3 (=9) and 174×3 
(=522) as the smallest and the highest possible values 
respectively was thereby obtained. The ranks thus 
innovatively devised facilitated a broad assessment of the 
spatially-averaged performance of the GCMs and the 
corresponding CMIP phase in simulating the whole range of 
temperature across mainland India, and facilitated the 
identification of the best GCM of each CMIP phase based on 
spatial averaging for further study. 

In the second approach, the performance in terms of spatial 
similarity of the GCMs of the two CMIP phases in simulating 
the reference data at all grid points across the mainland India 
was assessed for each temperature variable by pooling, i.e., 
spatially aggregating, the data of all grid points in a single 
series. Taylor diagrams were produced by evaluating and 
plotting the Correlation Coefficient (CC), centered Root 
Mean Square Error (RMSE) and Spatial Standard Deviation 
(SSD) between the reference data and the data simulated by 
each GCM by considering annual and seasonal data over the 
study area.  

Whereas the above two approaches reveal the 
performances of the GCMs across the range of each 
temperature variable from annual or seasonal considerations, 
the ability of the GCMs in simulating the extremes is also 
important. Accordingly, a third approach was adopted 
whereby the percent over- and under-estimation of the 1st and 
99th percentiles of the reference data at the grid points across 
mainland India by each GCM were explored for each 
temperature variable by considering annual data. The over- 
and under-estimations of the two selected percentiles by the 
best GCM of each CMIP phase as identified from spatial 
averaging in the first approach of methodology were also 
evaluated at the grid points of mainland India, and maps were 

produced to investigate the performance of the models of the 
two CMIP phases. 

IV. RESULT AND DISCUSSION 

A. Spatial Distribution of Performance of CMIP6 and 
CMIP5 Models 

The spatial distribution of the best-performing CMIP 
phase as identified in the first approach based on each of the 
three measures of performance, namely SScore, MAE and IoA, 
for each of the three temperature variables, namely Tmax, Tmean 
and Tmin, by separately considering annual and seasonal data 
across mainland India are exhibited in Figs. 2–4. It may be 
seen from these figures that, the spatial coverage as assessed 
in %age of grid points covering mainland India in simulating 
Tmax on the basis of annual data works out as being higher by 
the models of CMIP6 than those of CMIP5 for all three 
measures of performance. A similar observation is made for 
the models of CMIP6 when data of the summer season (JJA) 
is considered for simulation of Tmax. This appears as being 
obvious because the maximum temperature of a year is 
expected to occur in summer. In contrast, the spatial coverage 
of the models of CMIP5 emerges as being generally higher 
than those of CMIP6 in simulating Tmean and Tmin on the basis 
of annual data when evaluated with MAE and IoA, and at par 
in simulating Tmin when evaluated with SScore. The higher 
spatial coverage of the models of CMIP5 is also found in 
simulating Tmean in winter (DJF) when evaluated with all 
three measures of performance and in pre-monsoon (MAM) 
when evaluated with MAE and IoA, and in simulating Tmin in 
winter when evaluated with MAE, in pre-monsoon when 
evaluated with IoA, and in summer when evaluated with SScore. 
For the post-monsoon season, the spatial coverage by the 
models of CMIP6 appears as being consistently higher than 
those of CMIP5 for simulating all three temperature variables. 
From the above it is concluded that, although, in line with the 
expectation of higher performance by models of a latest 
phase of development, the best-ranking models of CMIP6 
perform with a higher spatial coverage in simulating Tmax 
when evaluated with annual data and the data of summer and 
post-monsoon seasons, the models of CMIP5 outperform 
those of CMIP6 in simulating Tmean and Tmin on the basis of 
annual data and with data of several seasons. These results 
show that the GCMs of CMIP5 still have value in 
reproducing the maximum, mean and minimum temperature 
at locations across mainland India based on their geographic 
disposition, and the temperature statistic and the annual or 
seasonal data considered, and, hence, in future projections of 
climate impacts. 

Another finding of the spatial distribution of best 
performing models of the two CMIP phases is a possible 
correspondence of the spatial pattern of the distribution with 
the topographical and climatological features of mainland 
India. In comparison with Fig. 1, it appears from Figs. 2–4 
that, for simulation of Tmax, the GCMs of CMIP6 generally 
perform better in flat and low altitude areas of the west and 
central India, and in high-altitude areas of the north, northeast 
and south India that are characterized by hot-dry, temperate 
and warm-humid climatic zones. Similarly, for simulation of 
Tmin, the GCMs of CMIP5 generally perform better in the 
alluvial flood plains of the north and northeast India and 
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high-altitude areas of the south and east India that are 
characterized by cold, composite and warm-humid climatic 
zones. Correspondence of Tmean simulated by CMIP6 models 
with topographical and climatological features, although 

likely in the hot-dry western region of the country with SScore 

and MAE as measures of performance, is not obvious when 
IoA is used as the measure of model performance. 

 
 

 
 

Fig. 2. Spatial distribution of CMIP6 and CMIP5 models based on the highest SScore considering data of whole year (WHY) and four seasons (DJF, MAM, JJA, 
SON) in (a)-(e) for Tmax, (f)-(j) for Tmean, and (k)-(o) for Tmin. 

 

 
Fig. 3. Spatial distribution of CMIP6 and CMIP5 models based on the least MAE considering data of whole year (WHY) and four seasons (DJF, MAM, JJA, 

SON) in (a)-(e) for Tmax, (f)-(j) for Tmean, and (k)-(o) for Tmin. 

B. Spatially Averaged Performance of CMIP6 and 
CMIP5 Models 

On application of spatial averaging, the ranks attained by 

the models of the two CMIP phases in simulating Tmax, Tmean 
and Tmin are presented in Fig. 5, and those obtained on 
combination of the ranks for Tmax, Tmean and Tmin from the 
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consideration of simulating the whole range of temperature 
over the study area are exhibited in Fig. 6. In these figures, a 
smaller value of a rank indicates a better performing model. It 
may be observed from Fig. 5 that, overall, for mainland India, 
EC-Earth3 and EC-Earth3-Veg of CMIP6 are the best 
performing GCMs for simulating Tmax and Tmean respectively, 
and ACCESS1-0 of CMIP5 is the best performing GCM for 
simulating Tmin. Fig. 5 also shows that, between the best and 
the worst ranks, the models of the two CMIP phases are fairly 
scattered with no indication of the models of any one phase 
being consistently better than those of the other. On 
aggregation of the ranks of each model in simulating each of 
Tmax, Tmean and Tmin, the aggregated ranks of 58 models are 
presented in Fig. 6. It may be seen from this figure that the 
GCMs named EC-Earth3 and EC-Earth3-Veg of CMIP6 and 
CMCC-CMS of CMIP5 appear as being the best, second-best 
and third-best models respectively. In this analysis, the 
performances of the second- and third-best models from 
CMIP6 and CMIP5 respectively emerged as being very close. 

The above observations substantiate the earlier findings 
regarding the value of CMIP5 as also of CMIP6. As an 
outcome of this analysis, EC-Earth3 of CMIP6 and 
CMCC-CMS of CMIP5 were considered for further analysis 
of temperature with the best model from each CMIP phase. In 
order to explore the applicability of the generally high 
performing EC-Earth3 model of CMIP6 and CMCC-CMS 
model of CMIP5 for simulating Tmax, Tmean and Tmin at all grid 
points of mainland India, the values of the three measures of 
performance produced by these two models are presented on 
the map of India in Figs. 7 and 8. It may be seen from these 
figures that the pattern of performance in simulating the three 
temperature variables over mainland India by the GCM of 
CMIP6 is generally comparable to that of CMIP5 for each of 
the three measures of performance with both models 
performing relatively poorly in the north, northeast and 
western coastal regions of India. This observation implies 
that any of these two models, one from each CMIP phase. 

 
Fig. 4. Spatial distribution of CMIP6 and CMIP5 models based on the highest IoA considering data of whole year (WHY) and four seasons (DJF, MAM, JJA, 

SON) in (a)-(e) for Tmax, (f)-(j) for Tmean, and (k)-(o) for Tmin. 
 

C. Spatial Similarity of Performance of CMIP6 and CMIP5 
Models 

The Taylor diagrams produced for Tmax, Tmean and Tmin by 
following the second approach of aggregating, i.e., pooling 
the data of all grid points, by considering the annual and 
seasonal data are presented in Fig. 9. The Taylor diagrams in 
this figure do not exhibit any distinct clustering of models of 
different CMIP phases or a large scatter of the models. The 
models in all tests of simulating the three temperature 
variables are found to be closely spaced within the 0.8 to 0.95 
band of CC with most tests showing the models achieving the 
values of CC between 0.9 and 0.95. Most models are also 
found to lie within the 4 to 6°C band of the centered pattern 

RMSE. The values of SSD of the models in the tests with 
annual data are found to be generally evenly distributed 
around and relatively less deviated from that of the reference 
data, whereas those for the tests with seasonal data show 
relatively more deviations from the SSD of the reference data 
with several tests showing models with SSD less than that of 
the reference data. However, the distribution of the models of 
CMIP6 and CMIP5 indicated respectively by blue and red 
colours on the Taylor diagrams do not suggest that the 
performance of the models of one CMIP phase would be 
better than that of the other; rather, some models of both 
phases are found to lie on the red arc representing the SSD of 
the reference data on the Taylor diagrams with comparable 
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values of CC and centered pattern RMSE. Overall, the above 
observations reinforce the earlier findings that the GCMs of 
CMIP5 also have value, and are likely to produce reliable 

estimates of temperature variables in reproducing historical 
data and projecting future occurrences. 

 

Fig. 5. Spatially averaged ranks of GCMs of CMIP6 (blue) & CMIP5 (red) in simulating (a) Tmax, (b) Tmean and (c) Tmin. 

 

 
Fig. 6. Spatially averaged ranks of GCMs of CMIP6 (blue) & CMIP5 (red) obtained by aggregating the ranks for Tmax, Tmean and Tmin. 

 
D. Performance of CMIP6 and CMIP5 Models in 
Simulating Temperature Extremes 

In investigating the performance of the two CMIP phases 
in simulating temperature extremes, the underestimations 
occurring in percentage of grid points in simulating the 1st 
and 99th percentile of each of the three temperature variables 
Tmax, Tmean and Tmin over the whole data period by the models 
of the two CMIP phases are graphically presented in Fig. 10. 
It may be seen from this figure that the percentage of grid 
points for which the 1st percentile of each variable is 
underestimated is relatively less for all models, thereby 

implying that the upper extremes of the reference data are 
either overestimated or reproduced at par on simulation by 
the GCMs of the both CMIP phases at most of the grid points. 
In contrast, underestimations occur in simulating the 99th 
percentile of the reference data in a large percentage of grid 
points for all three temperature variables with a small fraction 
of grid-points associated with over- or at par estimation. 
However, all models of the both CMIP phases are found to 
yield comparable percentages of over- or under-estimations 
with no distinct display to differentiate the models of one 
CMIP phase as being better than those of the other.  
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Fig. 7. Values of SScore ((a) to (c)), MAE ((d) to (f)) and IoA ((g) to (i)) produced by EC-Earth3 of CMIP6 in simulating Tmax ((a), (d), (g)), Tmean ((b), (e), (h)) and 

Tmin ((c), (f), (i)) considering whole year’s data. 
 

                    
 

Fig. 8. Values of SScore ((a) to (c)), MAE ((d) to (f)) and IoA ((g) to (i)) produced by CMCC-CMS of CMIP5 in simulating Tmax ((a), (d), (g)), Tmean ((b), (e), (h)) 
and Tmin ((c), (f), (i)) considering whole year’s data. 
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Fig. 9. Taylor diagrams showing the performance of all models of CMIP6 (in blue) and CMIP5 (in red) in simulating Tmax, Tmean and Tmin by considering data of 
whole year (WHY) and four seasons (JJA, SON, DJF, MAM). 
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Fig. 10. Percentage of grid-points in which the 1st and 99th percentiles of Tmax, Tmean and Tmin are underestimated by all selected GCMs of CMIP6 (in blue) and 

CMIP5 (in red). 
 
In order to further explore the simulation performance of 

the temperature extremes over mainland India, the over- or 
under-estimation of the 1st and 99th percentiles were 
estimated at each grid-point for each of Tmax, Tmean and Tmin by 
the best model of each of the two CMIP phases as described 
in subsection B. For this purpose, the over- or 
under-estimation, i.e., error, of a temperature extreme by a 
GCM was calculated as the deviation of a selected percentile 
of the model-estimated data computed over the whole data 
period from that of the reference data expressed as percentage 
of the latter. A positive or a negative value of this percent (%) 
error indicates an over- or under-estimation of a temperature 
extreme. Accordingly, the over- or under-estimation of the 
extreme values by EC-Earth3 of CMIP6 and CMCC-CMS of 
CMIP5 at all grid points are presented on the maps of India in 
Fig. 11 and 12 respectively.  

It may be found from Fig. 10 that the 1st percentile 
extremes of Tmax, Tmean and Tmin are generally overestimated 
and the 99th percentile extremes are generally underestimated 
in large fractions of the grid points across mainland India by 
both models. These observations are reflected in Figs. 11 and 
12. With reference to Fig. 1, it appears from these two figures 
that both models produce large underestimations of the 1st 
percentile extremes in the mountainous regions of the north 
and northeast India and considerably large overestimations in 
the north and central Indian plains. Parts of south and west 
India exhibit a relatively small overestimation of the 1st 

percentile extremes by both models. In the case of the 99th 
percentile extremes, both models yield relatively large 
underestimations of Tmax, Tmean and Tmin in the mountainous 
regions of the north and northeast India like those in the case 
of the 1st percentile extremes. For the rest of India, relatively 
small underestimations are produced by EC-Earth3 of 
CMIP6 and relatively small overestimations are produced by 
CMCC-CMS of CMIP5 in simulating the 1st percentile 
extremes of Tmax and Tmean. For the simulation of Tmin by 
EC-Earth3 model, the degree of underestimation of the 99th 
percentile extremes appear as being pronounced over much 
of mainland India with considerable underestimations 
occurring in the mountainous regions of the north and 
northeast. However, when simulated by CMCC-CMS, the 
99th percentile extremes appear as being better simulated than 
EC-Earth3 with relatively small overestimations over much 
of India and considerable underestimations in the 
mountainous regions of the north and northeast India and in 
some patches on the west, south and central India. These 
discernible patterns of simulations of temperature extremes 
by the two GCMs appear as being closely related to the broad 
topographical and climatological features of mainland India. 
Suitable methods of bias correction with reference to 
physiographical characteristics may be devised in future 
studies for reducing errors in estimating temperature 
extremes by GCMs of either of the two CMIP phases at 
different locations of mainland India. 
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Fig. 11. Spatial distribution of % error (+ve for over- and -ve for under-estimation) of the 1st percentile ((a) to (c)) and 99th percentile ((d) to (f)) of Tmax ((a) and 
(d)), Tmean ((b) and (e)) and Tmin ((c) and (f)) by EC-Earth3 of CMIP6.

 

 
Fig. 12. Spatial distributions of % error (+ve for over- and -ve for under-estimation) of the 1st percentile ((a) to (c)) and 99th percentile ((d) to (f)) of Tmax ((a) 

and (d)), Tmean ((b) and (e)) and Tmin ((c) and (f)) by CMCC-CMS of CMIP5. 
 

V. CONCLUSIONS AND RECOMMENDATIONS 

Several important inferences are drawn based on the 
performance of 30 GCMs of CMIP6 and 28 of CMIP5 in 
simulating the maximum (Tmax), mean (Tmean) and minimum 
(Tmin) temperature variables and their extremes at 4964 points 
at 0.25°×0.25° grids covering mainland India (excluding the 
islands).  

The spatial distribution of each of CMIP6 and CMIP5 
associated with a GCM performing best in simulating each of 
Tmax, Tmean and Tmin at each grid point across India revealed 
that the GCMs of each phase yielded a larger spatial coverage 
for one or the other variable over one or the other data-period 

(annual or seasonal). It is therefore concluded that, although 
GCMs of CMIP6 may be expected to perform better than 
those of the earlier phases of development, the GCMs of 
CMIP5 still have value in reproducing the maximum, mean 
and minimum temperature at locations across mainland India. 
Further, the pattern of spatial distribution of the two CMIP 
phases vis-a-vis topography and climatic zones of India, 
indicates the possibility of correspondence of the 
performance of the GCMs of each CMIP phase with 
topographical and climatological features of mainland India, 
and hence the possibility of devising suitable methods of bias 
correction by incorporating physiographical characteristics 
for reducing errors in estimating each of Tmax, Tmean and Tmin at 
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different locations of mainland India by GCMs of either of 
the two CMIP phases. 

From the consideration of spatial averaging, the attainment 
of the best ranks by two GCMs of CMIP6 in individually 
simulating Tmax and Tmean and one GCM of CMIP5 in 
simulating Tmin across all grid points over mainland India 
indicates that models of CMIP5 would be reliable in 
simulating and projecting future values of Tmin. The results of 
aggregating the ranks of each model yielding two models of 
CMIP6 as being the best and second-best, and one model of 
CMIP5 as being the third best with the ranks of the 
second-and third-best models being close also indicates that 
CMIP5 has value comparable to that of CMIP6. 

The pattern of the performance of the best model of each 
CMIP phase, i.e. EC-Earth3 of CMIP6 and CMCC-CMS 
from CMIP5, identified from aggregation of ranks of all 
models in simulating Tmax, Tmean and Tmin also implies that the 
best model of either of the two CMIP phases would be 
applicable for simulating historical data of temperature and 
projecting future impacts of climate change at any location, 
particularly at non-grid-points of India for which 
location-specific studies of climate models may not be 
feasible for identifying a suitable GCM. 

The visual assessment of spatial similarity of the GCMs of 
the both phases from Taylor diagrams show absence of any 
distinct clustering of models of different CMIP phases or a 
large scatter of the models, thereby indicating that the 
statistical characteristics of the GCMs of both CMIP6 and 
CMIP5 are comparable and that CMIP5 models also have 
value in producing reliable estimates of Tmax, Tmean and Tmin in 
simulation and, hence, in future projections. 

In respect of temperature extremes, large fractions of 
grid-points over mainland India are found to be characterized 
by overestimation of the 1st percentile and underestimation of 

the 99th percentile of each of the three temperature variables. 
However, no distinct pattern is found to suggest the 
superiority of one phase on the other in simulating these two 
extremes. From the grid-point level simulation of model 
performance by the best model of each CMIP phase 
identified from the aggregation of ranks, i.e., EC-Earth3 of 
CMIP6 and CMCC-CMS of CMIP5, it is concluded that the 
performance of the models of both CMIP phases in 
simulating the 1st and 99th percentiles are comparable, and 
that some correspondence of the pattern of model 
performance with topographical and climatological features 
is likely. 

In essence, it is concluded that, being developed in the 
latest phase, models of CMIP6 expectedly perform better in 
several cases of simulating Tmax, Tmean, Tmin and temperature 
extremes over mainland India. However, models of CMIP5 
also perform either better than or at par with those of CMIP6 
in some cases. The results of this study clearly indicate that 
CMIP5 models still have value in simulating temperature, 
and, hence, in projecting future impacts under different 
climate change scenarios based on their geographic 
disposition, and the temperature statistic and the annual or 
seasonal data considered, and, hence, in future projections of 
climate impacts at locations across mainland India based on 
their geographic disposition, and the temperature statistic and 
the annual or seasonal data considered. The results of this 
study also indicate the possibility of suitably incorporating 
extraneous parameters related to physiographical 
dispositions of a location for devising efficient methods of 
bias correction in future research towards improving 
performance of climate models in simulating different 
temperature variables.  

APPENDIX 
 

Table A1. Details of the selected GCMs of CMIP5 

Sl. No. Model name Resolution (Long × Lat) Institution 

1 MIROC4h 640×320 
AORI (Atmosphere and Ocean Research Institute), NIES (National Institute for 
Environmental Studies), JAMSTEC (Japan Agency for Marine-Earth Science 

and Technology), Japan 

2 ACCESS1-0 192×145 Commonwealth Scientific and Industrial Research Organisation and Bureau of 
Meteorology, Australia 3 ACCESS1-3 192×145 

4 CMCC-CESM 96×48 

Centro Euro-Mediterraneo per i Cambiamenti, Italy 5 CMCC-CMS 192×96 

6 CMCC-CM 480×240 

7 CNRM-CM5 256×128 Centre National de Recherches Meteorologiques, Meteo-France, France 

8 CSIRO-Mk3-6-0 192×96 
Australian Commonwealth Scientific and Industrial Research Organization, 

Australia 

9 CanESM2 128×64 Canadian Centre for Climate Modelling and Analysis, Canada 

10 EC-EARTH 320×160 EC-Earth (European Earth System Model) 

11 FGOALS-g2 128×60 
Institute of Atmospheric Physics, Chinese Academy of Sciences, China 

12 FGOALS-s2 128×108 

13 GFDL-CM3 144×90 

Geophysical Fluid Dynamics Laboratory, USA 14 GFDL-ESM2G 144×90 

15 GFDL-ESM2M 144×90 

16 IPSL-CM5A-LR 96×96 

Institut Pierre-Simon Laplace, France 17 IPSL-CM5A-MR 144×143 

18 IPSL-CM5B-LR 96×96 

19 MIROC-ESM-CHEM 128×64 AORI (Atmosphere and Ocean Research Institute), NIES (National Institute for 
Environmental Studies), JAMSTEC (Japan Agency for Marine-Earth Science 

and Technology), Japan 
20 MIROC-ESM 128×64 

21 MIROC5 256×128 

22 MPI-ESM-LR 192×96 Max Planck Institute for Meteorology, Germany 
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Sl. No. Model name Resolution (Long × Lat) Institution 

23 MPI-ESM-MR 192×96 

24 MPI-ESM-P 192×96 

25 MRI-CGCM3 320×160 
Meteorological Research Institute, Japan 

26 MRI-ESM1 320×160 

27 NorESM1-M 144×96 Norwegian Climate Centre, Norway 

28 inmcm4 180×120 Institute for Numerical Mathematics, Russia 

 
Table A2. Details of the selected GCMs of CMIP6 

Sl. No. Model name Resolution (Long × Lat) Institution 

1 ACCESS-CM2 192×144 Commonwealth Scientific and Industrial Research Organisation and Australian 
Research Council Centre of Excellence for Climate System Science, Australia 2 ACCESS-ESM1-5 192×145 

3 AWI-CM-1-1-MR 384×192 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 
Bremerhaven, Germany 

4 BCC-CSM2-MR 320×160 
Beijing Climate Center, China Meteorological Administration, China 

5 BCC-ESM1 128×64 

6 CMCC-CM2-SR5 288×192 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 

7 CanESM5 128×64 Canadian Centre for Climate Modelling and Analysis, Canada 

8 EC-Earth3-Veg-LR 512×256 

EC-Earth-Consortium 9 EC-Earth3-Veg-LR 320x160 

10 EC-Earth3 512×256 

11 FGOALS-f3-L 288×180 
Chines Academy of Sciences, China 

12 FGOALS-g3 180×80 

13 GFDL-CM4_gr1 360×180 

Geophysical Fluid Dynamics Laboratory, USA 14 GFDL-CM4_gr2 144×96 

15 GFDL-ESM4 288×180 

16 INM-CM4-8 180×120 
Institute for Numerical Mathematics, Russia 

17 INM-CM5-0 180×120 

18 IPSL-CM6A-LR 144×143 Institut Pierre-Simon Laplace, France 

19 MIROC6 256×128 JAMSTEC, AORI, NIES, R-CCS, Japan 

20 MPI-ESM-1-2-HAM 192×96 HAMMOZ-Consortium 

21 MPI-ESM1-2-HR 384×192 
Max Planck Institute for Meteorology, Germany 

22 MPI-ESM1-2-LR 192×96 

23 MRI-ESM2-0 320×160 Meteorological Research Institute, Japan 

24 NESM3 192×96 Nanjing University of Information Science and Technology, China 

25 NorCMP1 144×96 
NorESM climate modeling Consortium of CICERO, MET-Norway, NERSC, 
NILU, UiB, UiO and UNI, Norway 

26 NorESM2-LM 144×96 

27 NorESM2-MM 288×192 

28 SAM0-UNICON 288×192 Seoul National University, Korea 

29 TaiESM1 288×192 Research Center for Environmental Changes, Academia Sinica, Taiwan 

30 AWI-CM-1-1-LR 192×96 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 
Bremerhaven, Germany 
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