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Abstract—The aim of this research work is to report the CO2 

measurements of a short-term period carried out in the 

geothermal zone of Acoculco, Puebla (Mexico). CO2 

measurements were logged using a micrometeorological station 

Eddy Covariance. According to the complex geochemical 

phenomena involved in these measurements, artificial neural 

networks have been used for reproducing the CO2 

measurements, and to fill the gap issues during the monitoring 

period. This survey was also performed for the identification of 

CO2 anomalies in the zone, and also to determine the natural 

emission baseline of CO2 at the early exploration stage of this 

promissory geothermal system. Details of this evaluation study 

are outlined. 

 
Index Terms—Enhanced geothermal systems, environmental 

sustainability, geothermal energy, hot-dry rock, soil-gas 

emission. 

 

I. INTRODUCTION 

Geochemical knowledge of the carbon dioxide (CO2) flux 

dynamics into and out of the atmosphere is essential for 

understanding carbon sink and sources of magmatic or 

geothermal systems, among other terrestrial ecosystems [1], 

[2]. 

Field monitoring programmes, mapping, and modelling of 

CO2 fluxes in such systems are suggested as suitable 

geochemical tasks for the prospection of promissory 

geothermal zones, and for a better understanding of their 

natural contribution to the global carbon budget.  

The determination of the background or natural baseline 

gas emissions existing in such systems has been identified as 

an important challenge to be achieved. This crucial 

information may be useful for geothermal industry decision 

makers to install future commercial projects for the 

electricity generation and other direct uses. 

The modelling of CO2 flux dynamics in large covering 

areas requires the use of suitable measuring techniques 

together with simulation models for addressing some 

technical and scientific issues. 

Eddy covariance (EC) technique has been proposed as 
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geochemical tool for monitoring the net exchange rate of CO2 

through the interface between the atmosphere and the surface 

emission, e.g., biogenic (plant canopy) or soil-gas emitters. 

EC has the capability to provide automated CO2 flux 

measurements without ground surface interferences, which 

are averaged with time, and recorded from a larger spatial 

scale (m
2
 to km

2
) depending on the EC tower height. 

However, it is also recognized some technical limitations of 

the EC technique either to find out a good agreement with 

CO2 flux simulations or to face out some instrumental 

problems related to the measuring gaps (i.e., loss of data 

during continuous monitoring programmes) [3]. 

The non-linearity among CO2 fluxes and other 

meteorological flux parameters (e.g., energy fluxes, wind 

velocity and direction patterns, which are also measured by 

EC) have limited the applicability of complex theoretical 

(mechanistic approaches) and empirical (curve fitting or 

regression) CO2 flux models to predict the flux dynamics 

with accuracy [3]. Artificial neural networks (ANN) have 

been proposed as a multivariate modelling tool for 

identifying complex non-linear relationships between input 

and output variables without a comprehensive explanation of 

the actual physical nature of the phenomena, which are 

difficult to study by conventional techniques [4]. 

In the present study, we have carried out a field 

measurement campaign of CO2 fluxes in a new promissory 

geothermal zone of Mexico (known as Caldera of Acoculco, 

Puebla: see location in Fig. 1) by using an EC 

micrometeorology station. The applicability of ANN 

architectures for the prediction of CO2 fluxes from other 

meteorological input variables was evaluated. The capability 

of the best ANN architectures was used as a gap filling tool to 

solve the loss of information caused by local climate issues 

occurred during the EC monitoring programme. Details of 

this evaluation study are outlined. 

 

II. GEOLOGICAL SETTING 

The Acoculco Caldera belongs to the Eastern part of the 

Mexican Volcanic Belt (MVB) (Fig. 2). The MVB is the 

largest Neogene volcanic arc in North America, covering 

~160,000 km2 and a length of ~1,000 km between 18°30’ 

and 21°30’ N in central Mexico. The Acoculco Caldera (18 

km in diameter) is associated to a volcanism episode (1.7–

0.24 Ma) that occurred within the older and larger 

Tulancingo Caldera [5], [6].  

Two exploratory geothermal wells (EAC-1 and EAC-2) 

were drilled in Los Azufres zone (N Lat. 19° 55' 29.4'’; W 

Long. 98° 08' 39.9''; and altitude 2,839 m.a.s.l.) at a depth of 
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~2 km, where a hot-dry rock temperature of 300
o
C was 

measured without a fluid reservoir evidence (i.e., with a very 

poor rock-permeability) [7].  
 

 
Fig. 1. A Google Earth photography of Los Azufres area in the geothermal 

Caldera of Acoculco, Puebla. 
 

 
Fig. 2. Geographical Location of the Geothermal Zone of Acoculco, Puebla 

(México). 

 

III. EXPERIMENTAL 

A micrometeorological station of Eddy Covariance (EC) 

was successfully installed in the Los Azufres zone of the 

Caldera of Acoculco, Puebla (Fig. 3).  
 

 
Fig. 3. A drone landscape photography of Los Azufres area in the geothermal 

Caldera of Acoculco, Puebla. 

 

EC technique was used in this exploration study to 

determine the net exchange rate of CO2 across the interface 

between the atmosphere and a geothermal ecosystem (plant 

canopy and natural soil-gas emissions) by measuring the 

covariance between fluctuations in vertical wind velocity and 

CO2 mixing ratio.  

This method is most reliable when the atmospheric 

conditions (wind, temperature, humidity, soil-gas emissions) 

are steady, the underlying plants is homogeneous, and 

installed on a flat topography for an extended distance 

upwind [1], [8]. EC is an instrument whereby high frequency 

measurements of atmospheric CO2 are recorded at a height of 

3 m above ground by an infrared gas analyser (IRGA), 

accompanied by other detectors for sensing some other 

meteorological variables (e.g., wind velocity, air temperature, 

relative humidity, among others). 

EC technique was used after assuming spatial 

homogeneity of surface CO2 fluxes (FCO2), a flat terrain, and 

temporal stationary conditions which were all fulfilled in the 

geothermal zone of Acoculco. A gross conservation of 

energy and mass over land area is generally provided by these 

measurements (known as EC footprint) from which net FCO2 

are usually determined [9]. 

 

IV. RESULTS AND DISCUSSION 

Experimental measurements. A comprehensive CO2 

short-term monitoring programme based on the use of the EC 

technique was carried out during the dry season period: 

n=1,766 (15/03/2016 to 31/05/2016). Half-hourly 

measurements of FCO2 were recorded in the field by using an 

EC station for approximately 3 months. Positive FCO2 

measured with the EC micrometeorological station ranged 

from ~0.001 to 200 mol m
−2

d
−1

 with a mean and standard 

deviation of 5 and 11 mol m
−2

d
−1

, respectively. 

Measurement gaps in the time series of FCO2 were detected 

due to some local climatological changes mostly occurring 

during the night time (e.g., fogs, water condensation). Large 

diurnal to seasonal variations of soil-gas (CO2) 

concentrations, surface CO2 fluxes, and total CO2 discharges 

seem to be associated with local meteorological and 

hydrological processes. 

Maximum FCO2 up to 200 mol m
−2

d
−1

 were mainly 

registered in March, whereas for the April and May, the 

recorded fluxes varied up to 111 mol m
−2

d
−1

 and 140 mol 

m
−2

d
−1

, respectively (Fig. 4). 
 

 
Fig. 4. Time series plot of CO2 fluxes measured in the geothermal Caldera of 

Acoculco, Puebla (Mexico): ANN-3. 

 

A comprehensive CO2 short-term monitoring programme 

based on the use of the EC technique was carried out during 

the dry season period: n=1,766 (15/03/2016 to 31/05/2016). 

Half-hourly measurements of FCO2 were recorded in the field 

by using an EC station for approximately 3 months. Positive 

FCO2 measured with the EC micrometeorological station 

ranged from ~0.001 to 200 mol m
−2

d
−1

 with a mean and 
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standard deviation of 5 and 11 mol m
−2

d
−1

, respectively. 

Measurement gaps in the time series of FCO2 were detected 

due to some local climatological changes mostly occurring 

during the night time (e.g., fogs, water condensation). The 

large diurnal to seasonal variations of soil-gas (CO2) 

concentrations, surface CO2 fluxes, and total CO2 discharges 

seem to be associated with local meteorological and 

hydrological processes. Maximum FCO2 up to 200 mol 

m
−2

d
−1

 were mainly registered in March, whereas for the 

April and May, the recorded fluxes varied up to 111 mol 

m
−2

d
−1

 and 140 mol m
−2

d
−1

, respectively (Fig. 4).  

ANN simulation. A close correlation among FCO2 and 

energy fluxes (net radiation, RN; sensible, H and latent, LE 

heats; and evapotranspiration, ET), H2O vapour fluxes 

(H2O_Flux), and temperatures (air, TA; dew, Tdew) was 

mainly found. Using the commercial Matlab software a 

network was designed by using the experimental EC 

responses. 

The EC measurements were used as input data for the 

evaluation of all the ANN architectures, which were 

randomly divided into training (50%), testing (25%), and 

validation (25%) data sets. The ANN architectures used 

feed-forward models [10], which were characterized by an 

input layer (with an adjustable number of input neurons), a 

hidden layer (with an adaptable number of hidden neurons), 

and an output layer with the target (FCO2-Measured) and the 

predicted output (FCO2-ANN). In this way, a total number of 

3,240 ANN architectures were evaluated. Table I shows a 

summary of the best ANN architectures used in this study. 
 

    
 

  

 

 

  

 

  

  

 

  

  

 

  

  

 

  

 

As the nature of the EC data patterns were so complex, the 

number of the hidden layers were monitored for avoiding the 

well-known over-fitting or over-learning problems of the 

ANN. For all the ANN architectures, the activation function 

used for the hidden layer was the hyperbolic tangent sigmoid 

transfer function (tansig), whereas for the output layer, the 

linear function (purelin) was used.  

Multivariate statistical analysis and log-ratio 

transformations were used for normalizing the input variables. 

As a part of the methodology used, the input variable 

normalization, the use of learning rate factors, and the design 

of ANN architectures were together evaluated. The 

Levenberg-Marquardt algorithm, hyperbolic tangent sigmoid 

and linear transfer functions were used to optimize the ANN 

learning. 

The network architectures were trained and their 

performance expressed, as the linear correlation coefficient (r) 

between the target (FCO2-Measured) and the predicted (FCO2-ANN) 

variables were recursively evaluated, as well as for 

monitoring the over-fitting problems among the training, 

testing, and validation stages. The prediction capability of the 

ANN architectures were also evaluated through the 

calculation of classical statistical parameters: the root mean 

squares of errors (RMSE) and the mean absolute error (MAE). 

RMSE is a quadratic scoring rule that measures the average 

magnitude of the errors; whereas MAE measures the average 

magnitude of the errors in a set of estimations. Ideal values of 

RMSE and MAE should indicate a perfect prediction from the 

ANN model.  

The RMSE is given by the following equation: 

 

𝑅𝑀𝑆𝐸 = √∑ (𝐹𝐶𝑂2𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐹𝐶𝑂2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2𝑛

𝑘=1

𝑛
 

 

where n is the number of  EC measurements; whereas the 

MAE parameter is calculated by means of the following 

expression:  

 

𝑀𝐴𝐸 =
∑ |𝐹𝐶𝑂2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐹𝐶𝑂2𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|
𝑛
𝑘=1

𝑛
 

 

   

 

    

    

       

       

       

       

 

As can be observed in Table II, the prediction results 

(FCO2-ANN) inferred from some ANN architectures showed an 

acceptable matching with FCO2-Measured values, having the best 

results for the ANN-3 (which had 8 input neurons and 11 

neurons for the hidden layer) when the design was 

characterized by 50% for training, 25% for validation, and 25% 

for testing (Fig. 4); whereas for a slightly different input data 

array, the ANN-4 provided the best prediction results with 

consistently r values for the training, validation and testing 

stages, which avoid the ANN over-fitting problem (see Fig. 

5). 
  

 
Fig. 5. Time series plot of CO2 fluxes measured in the geothermal Caldera of 

Acoculco, Puebla (Mexico): ANN-4. 
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TABLE I: ANN INPUT-OUTPUT DATA ARCHITECTURES

ANN Input Layer Hidden 

Layer

Output

1 6

(RN, LE, H, TA, TS, Tdew)

8 1 (FCO2)

2 9

(RN, LE, H, TA, TS, SWC, 

H2O_Flux, ET, Tdew)

11 1 (FCO2)

3 8

(RN, LE, H, TA, SWC, 

H2O_Flux, ET, Tdew)

11 1 (FCO2)

4 6

(RN, LE, H, TA, TS, Tdew)

14 1 (FCO2)

RN: Net radiation; H: Sensible heat; LE: Latent heat; ET: Evapotranspiration; 

H2O_Flux: H2O vapour fluxes; TA: air temperature; Tdew: Dew temperature; TS: Soil 

temperature; SWC: soil water content. 

TABLE II: PREDICTION RESULTS ACHIEVED BY THE BEST ANN

ARCHITECTURES EVALUATED IN THIS STUDY

ANN r RMSE MAE

Global Training Validation Testing

1 0.8730 0.941 0.682 0.821 5.453 2.733

2 0.8760 0.951 0.706 0.778 5.343 2.701

3 0.8725 0.949 0.722 0.742 5.321 2.583

4* 0.8903 0.910 0.890 0.860 5.050 2.810

*These results were obtained when the ANN was slightly modified with a different 

input data array: 60% for training, 20% for validation, and 20% for testing. 



  

The correlation coefficient (r) of a linear regression 

between the target (FCO2-Measured) and the predicted (FCO2-ANN) 

variables was used for evaluating the prediction performance 

of the ANNs (Figs. 6 and 7). 
 

 
 

Fig. 6. Linear regression results obtained between FCO2-Measured and FCO2-ANN 

for the ANN-3 architecture. 

 

 
 

Fig. 7. Linear regression results obtained between FCO2-Measured and FCO2-ANN 
for the ANN-4 architecture. 

 

A sensitivity analysis was finally performed by using the 

Garson method [11] to evaluate the relative importance of 

input variables on the output target (FCO2-ANN).  

Table III summarises the sensitivity results obtained for 

the best ANN architectures.  
 

TABLE III: SENSITIVITY RESULTS OBTAINED BY THE BEST ANN 

ARCHITECTURES EVALUATED IN THIS STUDY 
 

AN

N 

Input variables (%) 

RN LE H TA TS Tde

w 

SW

C 

H2O_

F 

ET 

1 5.3 31.

6 

9.9 24.

1 

18.

5 

10.

6 

----- ----- ----

- 

2 14.

2 

14.

9 

11.

0 

8.7 10.

8 

6.6 9.0 14.4 10.

4 

3 5.3 12.

2 

11.

1 

13.

6 

----

- 

17.

5 

5.8 16.3 18.

2 

4 16.

9 

34.

6 

14.

6 

12.

6 

12.

1 

9.2 ----- ----- ----

- 

 

For the ANN-3, the sensitivity results showed that the 

evapotranspiration (ET) was the input variable with the larger 

weight percentage (18.2%); whereas the less relative 

importance variable was attributed to the net radiation (RN: 

5.3%). On the other hand for the ANN-4, the most important 

input variable was the latent heat (LE: 34.6%), whereas the 

less important variable was the dew temperature (Tdew: 

9.2%).  

V. CONCLUSION 

Artificial neural networks were successfully evaluated for 

the multivariate analysis among FCO2 and 

micrometeorological variables (energy fluxes, and H2O 

vapour fluxes, and temperatures) measurements carried out 

in the promissory geothermal caldera of Acoculco, Puebla 

(Mexico). The non-linearity of the complex relationships 

among CO2 fluxes and the micrometeorological variables 

were positively reproduced. The best ANN-4 simulation 

results of the study show that predicted CO2 fluxes closely 

matches the field measurements with a global linear 

correlation coefficient of r=0.8903. These results enable the 

measurement gap issues to be filled with reasonable accuracy 

by using the input variable weighting coefficients of each 

ANN equation. The present study demonstrates the efficient 

capability of applying ANN tools for modelling the complex 

CO2 flux dynamics in geothermal systems. 
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