Influence of Dissolution on Fate of Nanoparticles in Freshwater

Yubing Pu, Bertrand Laratte, and Rodica Elena Ionescu

Abstract—The fate of engineering nanoparticles (ENPs) determines how long they stay in a certain compartment such as freshwater. Many factors such as diameter of suspended particles in freshwater, depth of freshwater, may affect the fate of ENPs in freshwater with different extent. Dissolution rate ($k_{\rm diss}$) of ENPs has been demonstrated as one of the most significant parameters. However, the influences of $k_{\rm diss}$ on relative importance of the other parameters are still not clear. In this study, the relative importance of four parameters has been calculated with the $k_{\rm diss}$ being fixed to eight different values respectively. The relative importance decreases along with the increasing $k_{\rm diss}$ values. The results are well fitted ($R^2 > 0.999$) by an exponential associate function, which simplifies the calculation of the relative importance of the studied parameters.

Index Terms—Dissolution rate, fate model, nanoparticle, sensitivity analysis, exponential associate function.

I. INTRODUCTION

production and application of engineering nanoparticles (ENPs) are increasing rapidly due to their relatively specific characteristics compared to their bulk counterparts. Ref. [1]-[3] the wastewater treatment plant (WWTP) effluent is the main source of the ENPs in aquatic ecosystems. Ref. [4] fate describes the possible transport and destination of a substance. After the ENPs release into freshwater, many behaviors may occur (such as dissolution, aggregation, and transformation [5]) which are usually addressed as the fate of ENPs. Essentially, dissolution of ENPs is a transformation process from their solid form to the dissolved ionic form or other intermediates. Ref. [6] there are two important elements related to dissolution: solubility and dissolution rate. Solubility is the maximum amount of a solute (in this study is the ENPs) that a solvent can hold in solution at certain conditions. Dissolution rate presents how long it takes to get the saturation concentration of a solute.

Manuscript received September 22, 2016; revised December 22, 2016. Yubing Pu is with the Laboratoire de Nanotechnologie et d'Instrumentation Optique and the Centre de Recherches et d'Etudes Interdisciplinaires sur le Développement Durable, ICD, UMR-CNRS 6281, Universit é de Technologie de Troyes, 10004 Troyes cedex, France (e-mail: yubing.pu@utt.fr).

Bertrand Laratte was with the Centre de Recherches et d'Etudes Interdisciplinaires sur le Développement Durable, Universit éde Technologie de Troyes, 10004 Troyes, France. He is now with the Institute of Mechanics and Engineering, I2M, UMR-CNRS 5295, Arts et M étiers ParisTech, 33405 Talence cedex, France and Technopole Izarbel, APESA, 64210 Bidart, France (e-mail: bertrand.laratte@utt.fr, bertrand.laratte@ensam.eu).

Rodica Elena Ionescu is with the Laboratoire de Nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, ICD, UMR-CNRS 6281, 10004 Troyes cedex, France (e-mail: elena_rodica.ionescu@utt.fr).

Solubility is an endpoint, while dissolution rate is a kinetic process. Although the solubility and dissolution rate are different concepts, they are related. Based on the famous Noyes-Whitney equation, when dissolution is limited by diffusion, dissolution rate has positive correlation with solubility [7].

The dissolution of various ENPs could differ from each other vastly due to their different physical-chemical properties. However, even the same ENPs may have very different solubility and dissolution rate because of the different environmental conditions. For example, titanium dioxide nanoparticles (nano-TiO₂) were assumed to be practically insoluble in freshwater in many studies, [8], [9] while they were confirmed being able to dissolve in acid aqueous NaCl solutions (pH < 3) at temperatures of 25 and 37 °C. [10] Dissolution of zinc oxide nanoparticles (nano-ZnO) was observed with 7.18-7.40 mg/L dissolved Zn in pure water, but with much higher dissolved Zn concentration (> 34 mg/L) in a cell culture medium [11].

In order to appropriately assess the potential environmental impact of ENPs, many fate models have been developed to predict the fate of ENPs in various environmental media, particularly the aquatic media. Ref. [8], [12] a recently published research has demonstrated that there are many factors affecting the output of fate model, such as dissolution rate of ENPs, diameter of suspended particles in freshwater, depth of freshwater. Among them, dissolution rate is one of the most significant factor for many subcontinental regions [12].

However, directly modeling the dissolution of ENPs to understand its influence on fate of ENPs is difficult. Many factors may affect dissolution of ENPs in freshwater, such as temperature, pH, ion strength, natural organic matters. Ref. [5], [13] Even though some studies have described the dissolution kinetics of ENPs under extreme oxidative, acidic, or alkaline conditions, [14] the modeling of dissolution rate of ENPs in freshwater is complex and still in its infancy. Ref. [11], [12] therefore, in practice, as an acceptable simplification, the dissolution rate constant of ENPs in freshwater is assumed to be 0-10⁻⁵ s⁻¹ for different ENPs. [14]

In this study, four important input parameters of a fate model were selected. The influences of $k_{\rm diss}$ on fate model were indirectly investigated by studying the influences of $k_{\rm diss}$ on the relative importance of the four selected parameters.

II. METHODS

A. Fate Model for Enps in Freshwater

347

Recently, a fate model based on colloid science has been

proposed by our group to calculate the persistence time of ENPs in freshwater ecosystem. Ref. [12] its functionality was proved and it could be used to calculate ENPs' characterization factor (CF), an important input parameter in life cycle impact assessment (LCIA).

In the fate model, three behaviors have been considered as removal processes for freshwater after the ENPs released into freshwater: dissolution, sedimentation, and advection to other water compartments. In addition, the fate model considered 17 different subcontinental regions shown in Table I and gave the recommended values for each input parameter. Essentially, the fate model is a mathematical function with many input values. Thus, in this study, the fate model is defined as: $FF(\delta_1, \delta_2, \delta_3, \cdots)$. The δ_i ($i = 1, 2, 3, \cdots$) represents input parameters (such as radius of ENPs, depth of freshwater). More detailed information about the fate model could be found in the study of Pu, *et al.* [12].

TABLE I: THE 17 DIFFERENT SUBCONTINENTAL REGIONS CONSIDERED IN

THE STUDY OF PU ET AL. [12]				
Region ID	Region*			
DEFAULT	Unknown region			
W1	Central and west Asia			
W2	Indochina			
W3	Northern Australia			
W4	Southern Australia & New Zealand			
W5	Southern Africa			
W6	North, West, East & Central Africa			
W7	Argentina+			
W8	Brazil+			
W9	Central America+ & Caribbean			
W10	USA & Southern Canada			
W12	Northern Europe & Northern Canada			
W13	Europe			
W14	East Indies & Pacific			
CHI	Eastern China			
JAP	Japan & Korean peninsula			
IND	India+			

^{*}The further details about the countries within each region can be found in the study of Shaked. [15]

B. Sensitivity Analysis of Fate Model

Since the input values of fate model may vary in different literature sources, a sensitivity analysis for studying the influences of main input parameters on output results was carried out in previous study.[12] By doing this, it was possible to determine which input parameter should receive more attention in the future. One of the methods used in the study was labeled as "Single Parameter SA".[12] It was performed by varying each selected parameter within its range while holding the others constant. There were 13 parameters involved in total. The recommended values and ranges of main input parameters are listed in Table II. The first five parameters with high relative importance follow the order shown in (1), while the relative importance of the other studied parameters was at least 3 orders of magnitude lower compared to the first fives.[12]

$$k_{\rm diss} > r_{\rm LSP} > \rho_{\rm SNP} > \alpha_2 \approx Depth_{\rm water}$$
 (1)

where $k_{\rm diss}$ is the dissolution rate of ENPs in freshwater; $r_{\rm LSP}$ is the radius of larger suspended particles (LSP, > 450 nm) in

freshwater; ρ_{SNP} is the density of the suspended particles in freshwater; α_2 is the attachment efficiency between ENPs and LSP; $Depth_{\text{water}}$ is the depth of freshwater.

TABLE II: RECOMMENDED VALUES AND RANGES OF FIVE INPUT PARAMETERS FOR THE SENSITIVITY ANALYSIS EXTRACTED FROM THE STUDY OF PU ET AL. [12]

Parameter	Unit	Value	Range	Reference
$k_{ m diss}$	s ⁻¹	5 10-6	0-1 ·10 ⁻⁵	[12], [14]
				[12], [16],
r_{LSP}	m	$1.05 \cdot 10^{-5}$	$5 \cdot 10^{-7} - 1 \cdot 10^{-4}$	[17]
$ ho_{ ext{SNP}}$	kg m ⁻³	1230	1100-2500	[12], [16]
a_2		0.9	0.001-1	[8], [12]
$Depth_{\mathrm{water}}$	m		0.5 -2 $Depth_{water}$	[12], [18]

C. Sensitivity Analysis with Different Dissolution Rate

In the sensitivity analysis of fate model in the study of Pu *et al.* [12], the $k_{\rm diss}$ of ENPs was set as $5 \cdot 10^{-6} \, {\rm s}^{-1}$ as shown in Table II by the method "Single Parameter SA" when assessing the other parameters' relative importance. However, because the $k_{\rm diss}$ of ENPs is the most important parameter for many studied regions [12] and could be any value between 0 and $1 \cdot 10^{-5} \, {\rm s}^{-1}$, [14] the different $k_{\rm diss}$ values may have big influences on the sensitivity analysis results. Thus, in this study, eight values of $k_{\rm diss}$ have been selected to explore their potential influence on sensitivity analysis results. The eight selected values of $k_{\rm diss}$ are 0, $1 \cdot 10^{-7} \, {\rm s}^{-1}$, $5 \cdot 10^{-7} \, {\rm s}^{-1}$, $1 \cdot 10^{-6} \, {\rm s}^{-1}$, $3 \cdot 10^{-6} \, {\rm s}^{-1}$, $5 \cdot 10^{-6} \, {\rm s}^{-1}$, $7 \cdot 10^{-6} \, {\rm s}^{-1}$, and $1 \cdot 10^{-5} \, {\rm s}^{-1}$, respectively.

In practice, the fate model is simplified as a model with five variables (A, B, C, D, E) as shown in Fig. 1. From the aspect of computational mathematics, the fate model can be expressed as:

$$FF(k_{\text{diss}}, r_{\text{LSP}}, \rho_{\text{SNP}}, \alpha_2, Depth_{\text{water}})$$
 (2)

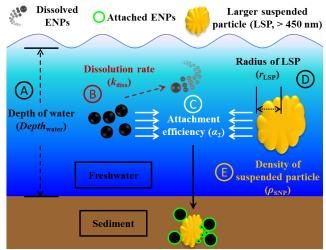


Fig. 1. The five fate model input parameters considered in this study: $k_{\rm diss}$, $Depth_{\rm water}$, α_2 , $r_{\rm LSP}$, and $\rho_{\rm SNP}$.

The values and ranges of the four parameters (r_{LSP} , ρ_{SNP} , α_2 , and $Depth_{\text{water}}$) are listed in Table II. All the other parameters are considered as constants and can be found in the study of Pu et al. [12] The method for doing sensitivity analysis is the same as "Single Parameter SA" by software MATLAB. [12], [19] When one parameter (δ) changes its value in its range, the other parameters stay as constants. In this way, a

maximum $(FF(\delta)_{\text{max}})$ and minimum $(FF(\delta)_{\text{min}})$ value can be obtained. The difference between $FF(\delta)$ max and $FF(\delta)$ min is defined as $DFF(\delta)$:

$$DFF(\delta) = FF(\delta)_{max} - FF(\delta)_{min}$$
 (3)

The value of $DFF(\delta)$ represents the relative importance of the parameter δ for one given region.

III. RESULTS AND DISCUSSIONS

A. Relative Importance of Four Studied Parameters in 17 Subcontinental Regions

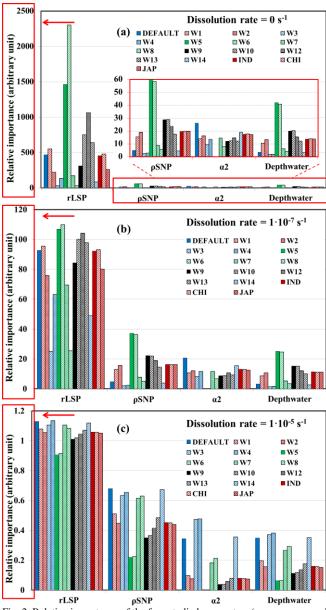


Fig. 2. Relative importance of the four studied parameters (r_{LSP} , ρ_{SNP} , α_2 , and $Depth_{water}$) in 17 subcontinental regions for ENPs' fate model, when (a) $k_{diss} = 0$; (b) $k_{diss} = 1 \cdot 10^{-7} \text{ s}^{-1}$; (c) $k_{diss} = 1 \cdot 10^{-5} \text{ s}^{-1}$.

The tables in Appendix list the relative importance of the four studied parameters (r_{LSP} , ρ_{SNP} , α_2 , and $Depth_{water}$) in 17 subcontinental regions for ENPs' fate model, when the k_{diss} respectively equals 0 (Table III), $1 \cdot 10^{-7}$ s⁻¹ (Table IV), $5 \cdot 10^{-7}$

s⁻¹ (Table V), $1 \cdot 10^{-6}$ s⁻¹ (Table VII), $3 \cdot 10^{-6}$ s⁻¹ (Table VIII), and $1 \cdot 10^{-5}$ (Table IX). The results related to $k_{\rm diss} = 5 \cdot 10^{-6}$ s⁻¹ were described in the study of Pu et al. [12] Here, three scenarios were shown by Fig. 2. Fig. 2(a) represents the case of insoluble ENPs with $k_{\rm diss} = 0$, while Fig. 2(c) is the situation of the ENPs with very quick dissolution rate equaling $1 \cdot 10^{-5}$ s⁻¹. Fig. 2(b) shows a general case ($k_{\rm diss} = 1 \cdot 10^{-7}$ s⁻¹) between the two extreme situations.

It is obvious that the relative importance of a certain parameter for the same region under different dissolution rates of ENPs has big differences. The scales of vertical axis for the three scenarios are 10^3 ($k_{\rm diss} = 0$, Fig. 2(a)), 10^2 ($k_{\rm diss} = 1 \cdot 10^{-7} \, {\rm s}^{-1}$, Fig. 2(b)) and 10^1 ($k_{\rm diss} = 1 \cdot 10^{-5} \, {\rm s}^{-1}$, Fig. 2(c)), respectively. In addition, the relative importance of different parameters differs from each other even under the same dissolution rate of ENPs. For example, the relative importance of $r_{\rm LSP}$ for W6 region (2300.812) is more than 700 times higher than for W3 region (32.302).

B. Influence of Dissolution Rate on Relative Importance of Four Studied Parameters

When dissolution rate was fixed to one value, the relative importance of one studied parameter (such as $r_{\rm LSP}$ and $\rho_{\rm SNP}$) for all the regions were calculated by summing the relative importance values of the same parameter for all the 17 subcontinental regions. The results are shown in Fig. 3. The relative importance of the four studied parameters follows the order below:

$$r_{\rm LSP} > \rho_{\rm SNP} > \alpha_2 \approx Depth_{\rm water}$$
 (4)

This order is the same as the one reported in the study of Pu *et al.*, which demonstrates that the change of dissolution rate will not change the priority of other parameters. However, it should be noted that the relative importance values of the four studied parameters decrease along with the increasing dissolution rates. The relative importance values have dropped dramatically with the dissolution rate lower than $1.10^{-6} \, \text{s}^{-1}$, while they decrease gradually with the dissolution rate between $1.10^{-6} \, \text{and} \, 1.10^{-5} \, \text{s}^{-1}$.

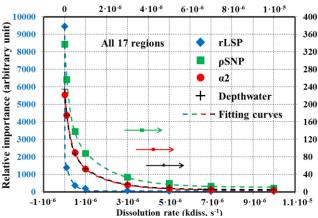


Fig. 3. Influence of dissolution rate on relative importance of the four studied parameters (r_{LSP} , ρ_{SNP} , α_2 , and $Depth_{water}$) for 17 subcontinental regions.

The four curves in Fig. 3 were fitted by an exponential associate function using Origin 9.0, respectively. All the four coefficients of determination (R^2) are higher than 0.999, which indicates that the fitting is quite successful.

The fitting equation is shown in (5) and the values of

fitting parameters are listed in Table X.

$$y = A + B \cdot (1 - e^{(-x/C)}) + D \cdot (1 - e^{(-x/E)})$$
 (5)

where y represents the relative importance of one given parameter (i.e. r_{LSP} , ρ_{SNP} , α_2 , and $Depth_{\text{water}}$) for 17 subcontinental regions and x is the dissolution rate of ENPs. e is the mathematical constant which is approximately equal to 2.71828.

TABLE X: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL

Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	a_2	$Depth_{\mathrm{water}}$	
A	$9.44 \cdot 10^3$	$3.37 \cdot 10^2$	$2.21 \cdot 10^{2}$	$2.33 \cdot 10^2$	
B	$-1.85 \cdot 10^3$	$-1.78 \cdot 10^2$	$-1.28 \cdot 10^2$	$-1.29 \cdot 10^2$	
C	$2.90 \cdot 10^{-7}$	$2.05 \cdot 10^{-7}$	$2.75 \cdot 10^{-7}$	2.04 ·10 ⁻⁷	
D	$-7.54 \cdot 10^3$	$-1.48 \cdot 10^2$	-8.95 ·101	-9.94 ·10¹	
E	$6.40 \cdot 10^{-11}$	1.59 ·10 ⁻⁶	$1.49 \cdot 10^{-6}$	1.38 ·10 ⁻⁶	
\mathbb{R}^2	0.99974	0.99911	0.99971	0.99928	

Interestingly, the relative importance of one studied parameter (such as r_{LSP} , ρ_{SNP}) for one subcontinental region (W1, W2, JAP, etc.) can also be well fitted by (5). One example of JAP region is shown in Fig. 4. The fitting parameters and coefficients of determination are listed in Table XI. The results for other regions are listed in tables from Table XII to Table XXVII, respectively.

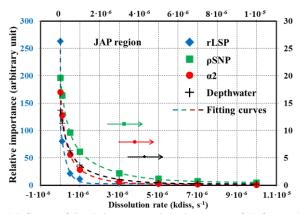


Fig. 4. Influence of dissolution rate on relative importance of the four studied parameters ($r_{\rm LSP}$, $\rho_{\rm SNP}$, α_2 , and $Depth_{\rm water}$) for JAP region.

Equation (5) and the parameters listed in Table X, Table XI-XXVII can be very practical for predicting the relative importance of the four studied parameters (r_{LSP} , ρ_{SNP} , α_2 , and $Depth_{water}$) in 17 subcontinental regions (in total or in separate) by just introducing the k_{diss} value as input data. It is noteworthy that although all the fitting parameters were calculated essentially based on the previous fate model and the recommended values in literature, [12] the results reported in this study can be expediently updated with new available data.

IV. CONCLUSION

Modeling the fate of ENPs in freshwater is a way to estimate the persistence time of ENPs. Various input parameters (e.g. radius and density of ENPs, depth of freshwater) have different influences on the output of ENP's

fate model. Dissolution rate ($k_{\rm diss}$) of ENPs plays an important role in estimation of ENPs' fate in freshwater. It also has significant influence on the relative importance of the other input parameters. The relative importance of the four studied parameters ($r_{\rm LSP}$, $\rho_{\rm SNP}$, α_2 , and $Depth_{\rm water}$) decreases along with the increasing $k_{\rm diss}$ values. The results are well fitted ($R^2 > 0.999$) by an exponential associate function which could be used for predicting the relative importance of the four studied parameters in 17 subcontinental regions (in total or in separate).

APPENDIX

TABLE III: THE RELATIVE IMPORTANCE (RI, ARBITRARY UNITS) OF FOUR DIFFERENT INPUT PARAMETERS IN FATE MODEL FOR 17 SUBCONTIENTAL REGIONS; DISSOLUTION RATE OF ENPS IS EQUAL TO 0

Regions	$RI(r_{LSP})$	$RI(\rho_{SNP})$	$RI(\alpha_2)$	RI(Depth _{water})
DEFAULT	467.005	4.886	26.134	3.415
W1	552.736	15.285	13.732	10.276
W2	221.949	18.773	16.169	13.084
W3	32.302	2.266	9.176	1.580
W4	139.565	2.603	13.351	1.817
W5	1462.919	60.067	0.000	41.941
W6	2300.812	58.223	0.000	40.676
W7	174.505	8.594	14.230	5.997
W8	32.991	5.547	7.640	3.845
W9	313.397	28.749	12.115	20.032
W10	752.095	28.645	12.242	20.004
W12	1064.061	23.522	14.496	15.120
W13	640.396	17.268	11.926	12.061
W14	85.272	4.248	18.793	2.964
IND	455.734	19.566	17.385	13.661
CHI	482.000	19.669	17.503	13.735
JAP	263.107	19.620	17.027	13.670

TABLE IV: THE RELATIVE IMPORTANCE (RI, ARBITRARY UNITS) OF FOUR DIFFERENT INPUT PARAMETERS IN FATE MODEL FOR 17 SUBCONTIENTAL REGIONS; DISSOLUTION RATE OF ENPS IS EQUAL TO 1.0 40-7 s-1

			•	
Regions	$RI(r_{LSP})$	$RI(\rho_{SNP})$	$RI(\alpha_2)$	$RI(Depth_{water})$
DEFAULT	92.729	4.661	20.577	3.254
W1	95.623	13.260	10.944	8.915
W2	75.978	15.779	12.278	10.897
W3	25.249	2.216	8.348	1.544
W4	63.260	2.537	11.734	1.770
W5	106.936	37.137	0.000	25.072
W6	109.893	36.477	0.000	24.713
W7	69.548	7.915	11.860	5.507
W8	25.659	5.250	6.830	3.627
W9	84.373	22.239	8.789	15.251
W10	100.155	22.223	8.950	15.325
W12	104.265	19.031	10.836	12.240
W13	97.936	14.724	9.494	10.222
W14	49.083	4.076	15.651	2.840
IND	92.199	16.353	13.067	11.328
CHI	93.229	16.426	13.139	11.380
JAP	80.282	16.377	12.785	11.305

TABLE V: THE RELATIVE IMPORTANCE (RI, ARBITRARY UNITS) OF FOUR DIFFERENT INPUT PARAMETERS IN FATE MODEL FOR 17 SUBCONTIENTAL REGIONS; DISSOLUTION RATE OF ENPS IS EQUAL TO 5.0 10-7 s-1

Regions	$RI(r_{LSP})$	$RI(\rho_{SNP})$	$RI(\alpha_2)$	RI(Depthwater)
DEFAULT	22.030	3.925	10.679	2.719
W1	22.138	8.534	5.493	5.599
W2	20.857	9.420	5.509	6.146
W3	13.474	2.034	6.065	1.412

W4	19.842	2.304	7.782	1.602	W3	1.560
W5	22.471	13.299	0.000	7.516	W4	1.621
W6	22.616	13.303	0.000	7.600	W5	1.382
W7	20.391	5.976	6.737	4.078	W6	1.394
W8	13.574	4.311	4.662	2.929	W7	1.593
W9	21.394	11.193	3.510	6.996	W8	1.540
W10	22.305	11.268	3.637	7.139	W9	1.496
W12	22.533	10.481	4.659	6.440	W10	1.510
W13	22.250	9.095	4.722	6.034	W12	1.536
W14	18.184	3.500	9.091	2.420	W13	1.563
IND	21.925	9.648	5.747	6.327	W14	1.599
CHI	21.983	9.674	5.762	6.344	IND	1.549
JAP	21.168	9.627	5.601	6.269	CHI	1.549
					JAP	1.541

TABLE VI: THE RELATIVE IMPORTANCE (RI, ARBITRARY UNITS) OF FOUR DIFFERENT INPUT PARAMETERS IN FATE MODEL FOR 17 SUBCONTIENTAL REGIONS; DISSOLUTION RATE OF ENPS IS EQUAL TO 1.0 $\cdot 10-6$ S-1

Regions	$RI(r_{LSP})$	$RI(\rho_{SNP})$	$RI(\alpha_2)$	RI(Depth _{water})
DEFAULT	11.269	3.265	6.318	2.230
W1	11.257	5.767	3.008	3.606
W2	10.896	6.063	2.814	3.664
W3	8.509	1.844	4.437	1.272
W4	10.674	2.064	5.345	1.426
W5	11.170	6.596	0.000	3.177
W6	11.218	6.659	0.000	3.252
W7	10.808	4.528	4.058	2.993
W8	8.536	3.502	3.193	2.322
W9	11.001	6.536	1.659	3.664
W10	11.248	6.619	1.737	3.779
W12	11.328	6.445	2.308	3.666
W13	11.278	5.987	2.558	3.717
W14	10.168	2.965	5.707	2.024
IND	11.183	6.172	2.906	3.751
CHI	11.198	6.182	2.909	3.757
JAP	10.978	6.140	2.822	3.696

TABLE VII: THE RELATIVE IMPORTANCE (RI, ARBITRARY UNITS) OF FOUR DIFFERENT INPUT PARAMETERS IN FATE MODEL FOR 17 SUBCONTIENTAL. REGIONS: DISSOLUTION RATE OF ENPS IS FOLIAL TO 3.0.10-6 s-1

REGIONS, DISSOLUTION RATE OF ENES IS EQUAL TO 3.0 ·10-0 S-1					
Regions	$RI(r_{LSP})$	$RI(\rho_{SNP})$	$RI(\alpha_2)$	$RI(Depth_{water})$	
DEFAULT	3.801	1.900	1.963	1.208	
W1	3.752	2.257	0.743	1.181	
W2	3.689	2.179	0.628	1.050	
W3	3.434	1.328	1.947	0.887	
W4	3.741	1.440	2.122	0.962	
W5	3.551	1.572	0.000	0.566	
W6	3.568	1.613	0.000	0.588	
W7	3.729	2.170	1.195	1.258	
W8	3.420	1.925	1.166	1.154	
W9	3.654	2.005	0.330	0.860	
W10	3.691	2.061	0.350	0.903	
W12	3.725	2.162	0.491	0.974	
W13	3.746	2.243	0.617	1.127	
W14	3.668	1.797	1.921	1.149	
IND	3.723	2.203	0.641	1.067	
CHI	3.725	2.204	0.640	1.066	
JAP	3.696	2.176	0.619	1.040	

TABLE VIII: THE RELATIVE IMPORTANCE (RI, ARBITRARY UNITS) OF FOUR DIFFERENT INPUT PARAMETERS IN FATE MODEL FOR 17 SUBCONTIENTAL REGIONS; DISSOLUTION RATE OF ENPS IS EQUAL TO 7.0 $\cdot 10\text{-}6 \text{ s-}1$

Regions	$RI(r_{LSP})$	$RI(\rho_{SNP})$	$RI(\alpha_2)$	$RI(Depth_{water})$
DEFAULT	1.623	0.967	0.604	0.538
W1	1.572	0.835	0.187	0.354
W2	1.542	0.752	0.150	0.289

TABLE IX: THE RELATIVE IMPORTANCE (RI, ARBITRARY UNITS) OF FOUR DIFFERENT INPUT PARAMETERS IN FATE MODEL FOR 17 SUBCONTIENTAL REGIONS; DISSOLUTION RATE OF ENPS IS EQUAL TO 1.0 :10-5 s-1

0.828

0.869

0.406

0.421

0.939

0.925

0.614

0.641

0.711

0.803

0.947

0.759

0.758

0.743

0.762

0.782

0.000

0.000

0.337

0.375

0.075

0.079

0.114

0.153

0.619

0.152

0.152

0.146

0.514

0.537

0.123

0.128

0.451

0.472

0.212

0.225

0.257

0.322

0.535

0.293

0.292

0.283

KEGIONS,	REGIONS; DISSOLUTION RATE OF ENPS IS EQUAL TO 1.0 ·10-5 S-1					
Regions	$RI(r_{LSP})$	$RI(\rho_{SNP})$	$RI(\alpha_2)$	$RI(Depth_{water})$		
DEFAULT	1.130	0.679	0.344	0.348		
W1	1.080	0.513	0.099	0.198		
W2	1.054	0.448	0.078	0.158		
W3	1.105	0.634	0.475	0.374		
W4	1.134	0.656	0.478	0.383		
W5	0.905	0.218	0.000	0.063		
W6	0.915	0.227	0.000	0.065		
W7	1.105	0.615	0.185	0.268		
W8	1.084	0.631	0.215	0.295		
W9	1.010	0.350	0.038	0.112		
W10	1.021	0.367	0.041	0.119		
W12	1.045	0.417	0.059	0.138		
W13	1.071	0.486	0.081	0.178		
W14	1.119	0.674	0.358	0.352		
IND	1.058	0.452	0.079	0.160		
CHI	1.058	0.452	0.079	0.159		
JAP	1.052	0.442	0.076	0.154		

TABLE XI: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN JAP REGION

Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	α_2	Depth _{water}
A	$2.63 \cdot 10^2$	19.57	16.99	13.64
B	$-1.08 \cdot 10^2$	-8.86	-6.49	-7.53
C	$2.98 \cdot 10^{-7}$	$1.85 \cdot 10^{-6}$	$1.10 \cdot 10^{-6}$	3.40 ·10 ⁻⁷
D	$-1.52 \cdot 10^2$	-10.22	-10.37	-5.92
E	$3.55 \cdot 10^{-10}$	$3.36 \cdot 10^{-7}$	$2.36 \cdot 10^{-7}$	1.57 ·10 ⁻⁶
\mathbb{R}^2	0.99885	0.99976	0.99976	0.99986

TABLE XII: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN DEFAULT REGION

Fitting parameters	$r_{ m LSP}$	$ ho_{ ext{SNP}}$	α_2	Depth _{water}
A	$4.67 \cdot 10^2$	4.88	26.10	3.41
B	$-3.35 \cdot 10^2$	-1.66	-14.70	-1.21
C	$1.42 \cdot 10^{-35}$	$1.01 \cdot 10^{-6}$	$2.63 \cdot 10^{-7}$	$1.06 \cdot 10^{-6}$
D	$-1.29 \cdot 10^2$	-2.83	-10.90	-2.02
E	$2.47 \cdot 10^{-7}$	$4.34 \cdot 10^{-6}$	$1.52 \cdot 10^{-6}$	$4.00 \cdot 10^{-6}$
\mathbb{R}^2	0.99957	0.99999	0.99965	0.99999

TABLE XIII: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W1 REGION

Fitting	Pr an	Ocean	a.	$Depth_{\mathrm{water}}$
parameters	$r_{\rm LSP}$	$ ho_{ ext{SNP}}$	α_2	Depinwater

\boldsymbol{A}	$5.53 \cdot 10^2$	15.20	13.70	10.30	
B	$-4.16 \cdot 10^2$	-7.29	-5.48	-4.84	
C	9.46 10 ⁻⁹⁵	$2.16 \cdot 10^{-6}$	$1.36 \cdot 10^{-6}$	$1.90 \cdot 10^{-6}$	
D	$-1.34 \cdot 10^2$	-7.45	-8.08	-5.21	
E	$2.96 \cdot 10^{-7}$	$4.14 \cdot 10^{-7}$	$2.96 \cdot 10^{-7}$	$4.37 \cdot 10^{-7}$	
\mathbb{R}^2	0.99968	0.99982	0.99984	0.99989	

TABLE XIV: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W2 REGION

1111	IN CITIMONETERS OF TATE MODEL IN WE REGION				
Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$	
A	$2.22 \cdot 10^2$	18.70	16.10	13.10	
B	$-1.01 \cdot 10^2$	-9.66	-6.16	-7.13	
C	3.09 10 ⁻⁷	3.47 · 10 ⁻⁷	$1.15 \cdot 10^{-6}$	3.51 ·10 ⁻⁷	
D	$-1.18 \cdot 10^2$	-8.57	-9.84	-5.73	
E	$8.87 \cdot 10^{-10}$	$1.89 \cdot 10^{-6}$	2.47 ·10-7	1.60 ·10 ⁻⁶	
\mathbb{R}^2	0.9985	0.99978	0.99977	0.99987	

TABLE XV: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (\mathbb{R}^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W3 REGION

Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	a_2	$Depth_{\mathrm{water}}$
A	32.19	2.27	9.16	1.58
B	-12.71	-0.48	-4.60	-0.35
C	$1.72 \cdot 10^{-6}$	$1.68 \cdot 10^{-6}$	$2.80 \cdot 10^{-6}$	$1.78 \cdot 10^{-6}$
D	-18.23	-1.48	-4.19	-1.08
E	$2.49 \cdot 10^{-7}$	$6.62 \cdot 10^{-6}$	$6.17 \cdot 10^{-7}$	$6.32 \cdot 10^{-6}$
\mathbb{R}^2	0.99944	1	0.99992	1

TABLE XVI: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W4 REGION

Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$
A	$1.40 \cdot 10^2$	2.60	13.32	1.82
B	-56.51	-1.68	-6.39	-1.22
C	$8.51 \cdot 10^{-24}$	$6.12 \cdot 10^{-6}$	$4.55 \cdot 10^{-7}$	5.85 ·10 ⁻⁶
D	-80.38	-0.60	-6.49	-0.43
E	$3.47 \cdot 10^{-7}$	1.53 ·10-6	$2.26 \cdot 10^{-6}$	1.63 ·10 ⁻⁶
\mathbb{R}^2	0.99713	1	0.99985	1

TABLE XVII: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W5 REGION

IN CITARCIMETERS OF TATE MODEL IN WE REGION					
Fitting parameters	$r_{ m LSP}$	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$	
A	$1.46 \cdot 10^3$	60.06	0	41.94	
B	$-7.28 \cdot 10^2$	-22.66	0	-15.36	
C	3.73 ·10 ⁻⁸	$7.77 \cdot 10^{-7}$	0	$6.14 \cdot 10^{-7}$	
D	$-7.28 \cdot 10^{2}$	-36.83	0	-26.37	
E	$3.73 \cdot 10^{-8}$	$1.26 \cdot 10^{-7}$	0	1.25 ·10 ⁻⁷	
\mathbb{R}^2	0.99954	0.99965	0	0.99987	

TABLE XVIII: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W6 REGION

Fitting parameters	$r_{ m LSP}$	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$
A	$2.3 \cdot 10^3$	58.21	0	40.67
B	$-1.15 \cdot 10^3$	-35.44	0	-25.24
C	$3.22 \cdot 10^{-8}$	$1.29 \cdot 10^{-7}$	0	$1.28 \cdot 10^{-7}$
D	$-1.15 \cdot 10^3$	-22.19	0	-15.22
E	$3.22 \cdot 10^{-8}$	7.96 10-7	0	$6.27 \cdot 10^{-7}$

K 0.99961 0.99902 0 0.99960	\mathbb{R}^2	0.99981	0.99962	0	0.99986
-----------------------------	----------------	---------	---------	---	---------

TABLE XIX: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W7 REGION

Fitting parameters	$r_{ m LSP}$	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$
A	$1.74 \cdot 10^2$	8.58	14.20	5.99
B	-90.34	-4.37	-6.31	-2.79
C	$3.26 \cdot 10^{-7}$	$3.18 \cdot 10^{-6}$	$1.63 \cdot 10^{-6}$	$7.07 \cdot 10^{-7}$
D	-81.43	-3.77	-7.67	-3.01
E	$9.55 \cdot 10^{-10}$	$6.85 \cdot 10^{-7}$	$3.49 \cdot 10^{-7}$	$2.82 \cdot 10^{-6}$
\mathbb{R}^2	0.99786	0.99994	0.99985	0.99996

TABLE XX: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS
OF DETERMINATION (R²) VALUES FOR THE FOUR STUDIED INPUT
PARAMETERS OF FATE MODEL IN W8 REGION

	TAKAMETERS	OI TAIL MODI	LE IN WORLD	IOIN
Fitting parameters	$r_{ m LSP}$	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$
A	32.88	5.54	7.63	3.84
B	-12.92	-2.05	-3.75	-2.14
C	1.70 ·10-6	$9.20 \cdot 10^{-7}$	5.53 10 ⁻⁷	3.56 ·10 ⁻⁶
D	-18.72	-3.12	-3.69	-1.53
E	$2.45 \cdot 10^{-7}$	$3.99 \cdot 10^{-6}$	$2.27 \cdot 10^{-6}$	$9.45 \cdot 10^{-7}$
\mathbb{R}^2	0.99942	0.99999	0.99992	0.99999

TABLE XXI: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W9 REGION

Fitting parameters	$r_{ m LSP}$	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$
A	$3.13 \cdot 10^2$	28.67	12.10	19.99
B	$-1.15 \cdot 10^2$	-11.79	-7.41	-7.84
C	$2.89 \cdot 10^{-7}$	1.46 ·10-6	$2.10 \cdot 10^{-7}$	1.19 ·10 ⁻⁶
D	$-1.96 \cdot 10^2$	-16.40	-4.60	-11.96
E	$4.65 \cdot 10^{-10}$	$2.45 \cdot 10^{-7}$	$9.28 \cdot 10^{-7}$	$2.44 \cdot 10^{-7}$
\mathbb{R}^2	0.99914	0.99959	0.99977	0.99974

TABLE XXII: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W10 REGION

Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	α_2	Depth _{water}
A	$7.52 \cdot 10^2$	28.56	12.22	19.96
B	$-1.42 \cdot 10^2$	-11.77	-4.61	-11.89
C	$2.62 \cdot 10^{-7}$	$1.48 \cdot 10^{-6}$	9.65 10 ⁻⁷	$2.50 \cdot 10^{-7}$
D	$-6.07 \cdot 10^2$	-16.30	-7.53	-7.87
E	2.36 10-9	$2.48 \cdot 10^{-7}$	$2.16 \cdot 10^{-7}$	$1.22 \cdot 10^{-6}$
\mathbb{R}^2	0.99982	0.99959	0.99977	0.99974

TABLE XXIII: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) Values for the Four Studied Input Parameters of Fate Model in W12 Region

Fitting parameters	$r_{ m LSP}$	$ ho_{ ext{SNP}}$	a_2	$Depth_{\mathrm{water}}$
A	$1.06 \cdot 10^3$	23.45	14.47	15.09
B	$-9.11 \cdot 10^2$	-12.81	-5.44	-8.59
C	$4.16 \cdot 10^{-32}$	$2.92 \cdot 10^{-7}$	$1.07 \cdot 10^{-6}$	3.11 ·10 ⁻⁷
D	$-1.49 \cdot 10^2$	-10.15	-8.92	-6.31
E	$2.56 \cdot 10^{-7}$	$1.68 \cdot 10^{-6}$	$2.34 \cdot 10^{-7}$	1.46 ·10 ⁻⁶
\mathbb{R}^2	0.99991	0.9997	0.99977	0.99983

TABLE XXIV: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R²) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN W13 REGION

Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$
A	$6.40 \cdot 10^2$	17.22	11.90	12.04
B	$-1.38 \cdot 10^2$	-8.67	-7.10	-6.36
C	$2.65 \cdot 10^{-7}$	3.74 ·10 ⁻⁷	$2.98 \cdot 10^{-7}$	3.82 ·10 ⁻⁷
D	$-4.99 \cdot 10^2$	-8.05	-4.69	-5.47
E	$8.35 \cdot 10^{-11}$	$2.01 \cdot 10^{-6}$	$1.34 \cdot 10^{-6}$	$1.72 \cdot 10^{-6}$
\mathbb{R}^2	0.99976	0.99979	0.99985	0.99988

TABLE XXV: THE VALUES OF FITTING PARAMETERS AND THE
COEFFICIENTS OF DETERMINATION (R²) VALUES FOR THE FOUR STUDIED
INPUT PARAMETERS OF FATE MODEL IN W14 REGION

INFOTT ARAMETERS OF LATE MODEL IN WITH REGION				
Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	a_2	$Depth_{\mathrm{water}}$
A	85.26	4.25	18.74	2.96
B	-56.97	-2.53	-8.48	-0.98
C	$1.13 \cdot 10^{-7}$	$4.65 \cdot 10^{-6}$	$1.78 \cdot 10^{-6}$	1.16 ·10 ⁻⁶
D	-26.49	-1.33	-9.85	-1.81
E	$9.20 \cdot 10^{-7}$	$1.10 \cdot 10^{-6}$	$3.35 \cdot 10^{-7}$	$4.30 \cdot 10^{-6}$
\mathbb{R}^2	0.99936	0.99999	0.99979	1

TABLE XXVI: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (R^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN IND REGION

Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$
A	$4.56 \cdot 10^2$	19.51	17.35	13.63
B	$-1.28 \cdot 10^{2}$	-10.16	-6.64	-7.48
C	$2.75 \cdot 10^{-7}$	$3.37 \cdot 10^{-7}$	$1.11 \cdot 10^{-6}$	3.44 ·10 ⁻⁷
D	$-3.25 \cdot 10^2$	-8.85	-10.56	-5.95
E	5.75 10-11	$1.86 \cdot 10^{-6}$	2.36 ·10 ⁻⁷	1.58 ·10 ⁻⁶
\mathbb{R}^2	0.99955	0.99976	0.99975	0.99986

TABLE XXVII: THE VALUES OF FITTING PARAMETERS AND THE COEFFICIENTS OF DETERMINATION (\mathbf{R}^2) VALUES FOR THE FOUR STUDIED INPUT PARAMETERS OF FATE MODEL IN CHI REGION

Fitting parameters	r_{LSP}	$ ho_{ ext{SNP}}$	α_2	$Depth_{\mathrm{water}}$
A	$4.82 \cdot 10^2$	19.62	17.47	13.70
B	$-1.30 \cdot 10^2$	-8.89	-6.69	-7.53
C	$2.73 \cdot 10^{-7}$	1.86 ·10 ⁻⁶	$1.10 \cdot 10^{-6}$	$3.42 \cdot 10^{-7}$
D	$-3.49 \cdot 10^{2}$	-10.23	-10.63	-5.98
E	$2.79 \cdot 10^{-11}$	3.36 · 10 ⁻⁷	$2.35 \cdot 10^{-7}$	1.58 ·10 ⁻⁶
\mathbb{R}^2	0.99959	0.99976	0.99975	0.99986


ACKNOWLEDGMENT

Yubing Pu kindly thanks the China Scholarship Council (CSC) for funding his Ph.D. fellowship in France.

REFERENCES

- [1] K. Juganson, A. Ivask, I. Blinova, M. Mortimer, and A. Kahru, "NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials," *Beilstein J Nanotechnol*, vol. 6, pp. 1788-1804, 2015.
- [2] S. J. Tesh and T. B. Scott, "Nano-composites for water remediation: A review," *Advanced Materials*, vol. 26, pp. 6056-6068, 2014.
- [3] T. Y. Sun, N. A. Bornhoft, K. Hungerbuhler, and B. Nowack, "Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials," *Environmental Science & Technology*, vol. 50, pp. 4701-4711, 2016.
- [4] F. Gottschalk and B. Nowack, "The release of engineered nanomaterials to the environment," *Journal of Environmental Monitoring*, vol. 13, pp. 1145-1155, 2011.
- [5] J. R. Conway, A. S. Adeleye, J. Gardea-Torresdey, and A. A. Keller, "Aggregation, dissolution, and transformation of copper nanoparticles in natural waters," *Environmental Science & Technology*, vol. 49, pp. 2749-2756, 2015.

- [6] J. T. Quik, "Fate of nanoparticles in the aquatic environment," Ph.D. dissertation, Radboud University Nijmegen, Netherlands, 2013.
- [7] A. A. Noyes and W. R. Whitney, "The rate of solution of solid substances in their own solutions," *Journal of the American Chemical Society*, vol. 19, pp. 930-934, 1897.
- [8] J. A. Meesters, A. A. Koelmans, J. T. Quik, A. J. Hendriks, and D. van de Meent, "Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation," *Environmental Science & Technology*, vol. 48, pp. 5726-5736, 2014.
- [9] B. Salieri, S. Righi, A. Pasteris, and S. I. Olsen, "Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle," *Science of the Total Environment*, vol. 505, pp. 494-502, 2015.
- [10] J. Schmidt and W. Vogelsberger, "Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect," *Journal of Physical Chemistry B*, vol. 110, pp. 3955-3963, 2006.
- [11] R. B. Reed, D. A. Ladner, C. P. Higgins, P. Westerhoff, and J. F. Ranville, "Solubility of nano-zinc oxide in environmentally and biologically important matrices," *Environmental Toxicology and Chemistry*, vol. 31, pp. 93-99, 2012.
- [12] Y. Pu, F. Tang, P. M. Adam, B. Laratte, and R. E. Ionescu, "Fate and characterization factors of nanoparticles in seventeen subcontinental freshwaters: A case study on copper nanoparticles," *Environmental Science & Technology*, vol. 50, pp. 9370-9379, 2016.
- [13] J. Liu and R. H. Hurt, "Ion release kinetics and particle persistence in aqueous nano-silver colloids," *Environmental Science & Technology*, vol. 44, pp. 2169-2175, 2010.
- [14] J. T. Quik, J. A. Vonk, S. F. Hansen, A. Baun, and D. Meent, "How to assess exposure of aquatic organisms to manufactured nanoparticles?" *Environment International*, vol. 37, pp. 1068-1077, 2011.
- [15] S. Shaked, "Multi-continental multimedia model of pollutant intake and application to impacts of global emissions and globally traded goods," Ph.D. dissertation, University of Michigan, Ann Arbor, MI, 2011
- [16] A. Praetorius, M. Scheringer, and K. Hungerbuhler, "Development of environmental fate models for engineered nanoparticles — A case study of TiO₂ nanoparticles in the Rhine River," *Environmental Science & Technology*, vol. 46, pp. 6705-6713, 2012.
- [17] B. Lartiges, S. Deneux-Mustin, G. Villemin, C. Mustin, O. Barres, M. Chamerois, B. Gerard, and M. Babut, "Composition, structure and size distribution of suspended particulates from the Rhine River," *Water Research*, vol. 35, pp. 808-816, 2001.
- [18] P. Fantke, X. Bengoa, B. Chappert, Y. Dong, C. Guignard, M. Z. Hauschild, M. Huijbregts, O. Jolliet, A. Kounina, and V. Magaud USEtox® 2.0 Documentation (Version 1.00), USEtox® Team, 2015.
- [19] MathWorks MATLAB and simulink for technical computing website. [Online]. Available: http://www.mathworks.com/index.html

Yubing Pu is currently pursuing his Ph.D. studies at University of Technology of Troyes under the supervision of Prof. Ionescu and Laratte. He received his bachelor degree in environmental science in 2010 at Shandong Jianzhu University and master degree in chemistry in 2013 at China University of Geosciences (Beijing). In 2011 and 2012, he engaged in scientific research as a visiting student in Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences in Beijing.

His current research work is mainly focusing on the nanosafety issues related to the impacts of manufactured nanomaterials on human and ecosystems and the behavior of nanomaterials in the environment.

Bertrand Laratte is an associate professor at the Institute of Mechanics and Engineering, Arts et M diers ParisTech. Between 2014 and 2016, he was an associate professor at the Research Centre for Environmental Studies and Sustainability, University of Technology of Troyes (UTT). He received his Eng. degree in industrial system in 2004 at UTT, M.Sc degree in environmental management and sustainable

development in 2005 at UTT, and Ph.D. degree in 2013 at UTT. He spent more than 5 years as an expert in life cycle assessment in a consulting company before to join UTT for his Ph.D. He works with multidisciplinary researchers like biologist, physicist, etc. to update life cycle impact assessment methodologies.

His research interests mainly merge experimentation and collection data with environmental modeling to assess the potential environmental impacts.

His contribution has the ambition to help mechanical design and industrial processes in order to reduce the environment risks.

Rodica Elena Ionescu is an associate professor at the University of Technology of Troyes, France, in the Nanotechnology and Optical Instrumentation Laboratory since December 4th 2009. She earned one Ph.D. from the Ben-Gurion University of Negev, Israel in Biotechnological Engineering in 2004 and a second Ph.D. in Chemistry, from the University of Bucharest, in 2007.

She has performed several post-doctoral positions in France in the field of electrochemical biosensors. Between February-October 2008, Dr. Ionescu was a researcher fellow at the National Nanotechnology Laboratory, Lecce (Italy) working on impedimetric cell-chips based interdigitated microlectrodes. Thanks to the obtained research grants, Dr. Ionescu

developed novel acoustic and optical platforms for ultrasensitive detection of biomolecules and pesticides. In 2012, Dr. Ionescu was awarded with a national OSEO Innovation grant. Between April 1st 2014 to March 30, 2015 Dr. Ionescu was the scientific research manager of a Proof-of Concept (POC) Grant-NRF-POC 002-026 supported by the Singapore National Research Foundation concerning the *Electrochemical lateral flow biosensor detection and quantification of Dengue virus in whole blood* at the Nanyang Technological University, School of Materials Science and Engineering under an international CREATE-NTU-HUJ-BGU program.

Her current research activities include the development of multi-analyte biosensors, specific (bio)functionalization of surfaces, atomic force microscopy nanopipette applications, controllable synthesis of nanoparticle, evaluation of toxicity of nanoparticles and water pollutants to living cells and microorganisms.