Abstract—In order to study PAHs concentration in Ark clam Barbatia helblingii, in Bushehr coastal zone, samples of clams was collected from five stations. Following digestion of clam’s soft tissues in methanol, their PAHs content was extracted with hexane solvent and then measured by HPLC. Result showed that the total PAHs concentration in samples taken from Rafael, Sheghbab, Abshirinkon, Lian and Helyleh were 634.7, 476.7, 129.5, 452.5 and 415.0 ng g-1(dw) respectively. Significant difference was observed between tPAHs concentration in different stations (P<0.05). Maximum and minimum concentration of PAHs was measured in clams collected from Rafael and Abshirinkon respectively. Among different PAHs compounds, 3 rings PAHs were the most abundant. The mean concentration of tPAHs in clams collected from Bushehr coast was 421.86 ng g-1. PAHs contamination in Bushehr originates from both pyrolytic and petrogenic sources. Compared to other studies from other parts of the world, the level of contamination was moderately high.

Index Terms — Barbatia helblingii, bushehr, PAHs, persian gulf

I. INTRODUCTION

Crude oil and its derivatives are the major group of marine ecosystem contaminants which is widespread in the world. Two different types of hydrocarbons exist in crude oil, aliphatic and aromatic hydrocarbons, among them the second type have attracted more concerns due to its adverse effects on aquatic organisms. Polycyclic aromatic hydrocarbons (PAHs) constitute about 0.2 to 7% of the total hydrocarbons in the oil [1]. Since these compounds have low vapor pressure and solubility in seawater, they tend to be absorbed by suspended organic matter and finally deposit in sediment [3]. From South Persian Gulf, Bushehr, Iran

PAHs Concentration in Ark clam (Barbatia helblingii) From South Persian Gulf, Bushehr, Iran

Alireza Safahieh, Masoomeh Mahmoodi, Yadollah Nikpoor, and Kamal Ghanemi

PAHs Concentration in Ark clam (Barbatia helblingii)

Alireza Safahieh, Masoomeh Mahmoodi, Yadollah Nikpoor, and Kamal Ghanemi

II. MATERIAL AND METHODS

Clams samples were collected from five different stations along the Bushehr coast including Rafael, Sheghbab, Abshirinkon, Lian and Helyleh in August 2008 (Fig. 1). The Name and the major human activities of each station are presented in Table I. About 30 Ark clams with the same size (35±5mm) were collected from each station. They were enveloped in aluminum foils, kept cold in Icebox, and transported to the laboratory.

In order to gain dried samples, the soft tissue of 5-6 individuals was homogenized and freeze-dried. Three pooled samples of clam tissues were analyzed for each station. To run PAHs digestion and extraction procedures, 5 g of each dried sample was digested with 1 ml decachlorobiphenyl (16 µ L-1) as surrogate standard [18] in 200 ml methanol using Soxhlet apparatus. PAHs content of this mixture were extracted by 30 ml double distilled water and 60 ml Hexane using separator funnel. Extraction was repeated twice with 2 volumes of hexane (50 ml). The extract was concentrated by rotary evaporator and then passed through column clean up including 10mg of activated alumina, silica and anhydrous sodium sulfate [12], [19]. After evaporation of the whole volume of solvent, 1ml acetoniitrile was added to extract [16] and the mixture was injected to HPLC. In order to analyze PAHs, the HPLC system prepared with UV detector and C18 reverse phase. A linear gradient started with acetoniitrile (40%) and water (60%) which converted to 100% acetoniitrile in 31 minutes by 2.0 ml/min flow rate. PAHs calibration mix contained 16 different aromatic compounds including: naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, acenaphylylene, benzo[a]pyrene, pyrene dibenzo[a,h]anthracene, benzo[ghi] -perylene and indeno[1,2,3-cd]pyrene. The chromatogram of standard calibration curve is shown in Fig. 2.
The obtained data were subjected to Shapiro-wilk normality test. Since the data were normally distributed, the difference between tPAHs concentrations in different stations was compared by one way analysis of variance (ANOVA).

TABLE I: DESCRIPTION AND GEOGRAPHICAL LOCATION OF SAMPLING STATIONS IN THE BUSHEHR COAST.

<table>
<thead>
<tr>
<th>Stations</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>St1 (Rafael)</td>
<td>28º 57' 49.5"</td>
<td>50º 48' 43.2"</td>
<td>landing port for fishing vessels</td>
</tr>
<tr>
<td>St2 (Sheghab)</td>
<td>28º 55' 38.7"</td>
<td>50º 48' 26.7"</td>
<td>Building construction, residential area</td>
</tr>
<tr>
<td>St3 (Abshirinkon)</td>
<td>28º 54' 12.7"</td>
<td>50º 49' 9.0"</td>
<td>urban dump</td>
</tr>
<tr>
<td>St4 (Lian)</td>
<td>28º 52' 20.0"</td>
<td>50º 50' 33.3"</td>
<td>landing port for fishing vessels, small industries</td>
</tr>
<tr>
<td>St5 (Helyleh)</td>
<td>28º 50' 3.3"</td>
<td>50º 52' 31.9"</td>
<td>landing port for fishing vessels, urban dump</td>
</tr>
</tbody>
</table>

III. RESULTS AND DISCUSSION

Concentrations of PAHs in clam's soft tissue are shown in Table II. Some PAHs compounds such as naphthalene, dibenzo[a,h]anthracene, benzo[ghi]perylene and indeno-[1,2,3-cd] pyren were absent in the studied samples while some others such as pyrene and phenanthrene were found in high concentrations. Phenanthrene and pyrene had considerable concentrations in Rafael, Sheghab and Lian. Relatively the elevated level of Aacenaphtylene in was observed in Abshirinkon, while Phenanthrene and fluoranthene were higher in Helyleh which, might be related to different sources of PAHs in the stations. In recent years researchers used isomers ratio indices of some single PAHs compounds in order to Investigations and identify the source of PAHs in the marine ecosystems [21-23]. The Ant/Ant+Phe ratio (Anthracene /Anthracene+Phenanthrene) is one of the
common indices which have been applied in this propose. Where this ratio is more than 0.1 indicates that PAHs originate from pyrolytic sources while, if the ratio is less than 0.1 it means that PAHs have come from petrogenic sources. Another isomer index for determining PAHs sources is Flu/Flu+Pyr (Fluoranthene/Fluoranthene+Pyrene). Once this ratio is more than 0.5 indicates PAHs originate from pyrolytic sources, but petrogenic sources exhibit Flu/Flu+Pyr ratio less than 0.5 [5], [22]. Calculating of the above mentioned indices for the data presented in table II revealed that in four stations (Rafael, Sheghab, Abshirinkon and Lian PAHs originated from both pyrolytic and petrogenic sources. The mentioned stations are located near harbours or ports and received sea-based PAHs (commonly from petrogenic sources). Since these stations are placed in Bushehr city, land based and urban discharges may also contribute in PAHs inputs (mainly pyrolytic PAHs). Unlike other stations, Helyleh is less urbanized and located far from the city, harbors and ports. This station receives PAHs mainly from petrogenic sources which are carried there by water current. The calculated values of Ant/Ant+Phe and Flu/Flu+Pyr ratios are shown in Fig. 3 and 4 respectively.

According to the results tPAHs concentration in the soft tissue of ark clams were 634.7 ng g-1 in Rafael, 476.7 ng.g-1 in Sheghab, 129.5 ng.g-1 in Abshirinkon, 425.5 n g.g-1 in Lian and 415.0 ng.g-1 in Helyleh. Significant difference was observed between tPAHs concentrations in various station (P<0.05). The maximum tPAHs concentration was measured in samples taken from Rafael. On the other hand the minimum tPAHs content was observed in clams collected from Abshirinkon. Rafael and Sheghab coasts are located in the Bushehr city and are exposed to harbor and urban wastes. Therefore compared to other stations, higher concentrations of PAHs in these locations is an expected issue. The Lowest tPAHs concentration was observed in Abshirinkon, which could be due to its long distance from the city and less also the absence of contamination sources.

TABLE II: PAHS CONCENTRATION IN ARK CLAM’S SOFT TISSUE FROM STUDIED STATIONS (MEAN± STANDARD DEVIATION).

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Rafael</th>
<th>Sheghab</th>
<th>Abshirinkon</th>
<th>Lian</th>
<th>Helyleh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Acenaphthyleny</td>
<td>59.7±4.4</td>
<td>ND</td>
<td>39.4±3.3</td>
<td>ND</td>
<td>10.8±3.6</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>80.0±5.7</td>
<td>55.8±3.8</td>
<td>14.3±1.9</td>
<td>41.4±3.0</td>
<td>26.4±1.3</td>
</tr>
<tr>
<td>Fluorine</td>
<td>40.2±3.0</td>
<td>48.0±3.2</td>
<td>3.6±1.0</td>
<td>37.5±3.6</td>
<td>2.8±1.9</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>116.8±7.0</td>
<td>94.0±6.8</td>
<td>9.0±1.6</td>
<td>109.5±5.5</td>
<td>108.3±3.9</td>
</tr>
<tr>
<td>Anthracene</td>
<td>55.5±3.6</td>
<td>27.7±2.4</td>
<td>1.9±0.5</td>
<td>59.5±5.2</td>
<td>5.0±2.3</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>55.8±3.0</td>
<td>38.4±3.2</td>
<td>11.4±2.4</td>
<td>33.2±2.2</td>
<td>71.8±4.0</td>
</tr>
<tr>
<td>Pyrene</td>
<td>148.7±10.3</td>
<td>108.1±8.0</td>
<td>17.2±2.9</td>
<td>95.5±5.9</td>
<td>37.3±1.0</td>
</tr>
<tr>
<td>Benzo[a]anthracene</td>
<td>39.3±3.3</td>
<td>53.0±3.6</td>
<td>7.9±1.9</td>
<td>3.3±0.9</td>
<td>53.3±1.5</td>
</tr>
<tr>
<td>Chrysene</td>
<td>ND</td>
<td>24.0±2.1</td>
<td>7.5±0.9</td>
<td>4.6±1.0</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>ND</td>
<td>8.4±0.7</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>32.7±2.4</td>
<td>7.2±0.6</td>
<td>8.9±1.0</td>
<td>14.5±1.5</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>ND</td>
<td>21.3±3.9</td>
<td>ND</td>
<td>53.4±2.3</td>
<td>ND</td>
</tr>
<tr>
<td>Dibenzo[a,h]anthracene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Benzo[ghi]perylene</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>6.0±0.6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>tPAHs</td>
<td>634.7±43.4</td>
<td>476.7±37.7</td>
<td>129.5±18.1</td>
<td>452.5±33.1</td>
<td>415.0±25.3</td>
</tr>
</tbody>
</table>

The European Commission Union, considered Benzo(a)pyrene as a marker for the occurrence and effect of carcinogenic PAHs in food[8]. According to this guideline the maximum concentration level of PAHs in bivalves is 10ng g-1 (fresh weight). In order to compare the results with this guideline, the concentration of Benzo(a) pyrene measured in dry weight was converted to fresh weight using 0.24 conversion coefficient[13]. The average
Benzo(a)pyrene concentration in Arc clams was 3.58 ng g⁻¹ (fresh weight), which was lower than its maximum concentration level in food.

Based on the results, the mean concentration of tPAHs in Arc clams was 421.86 ng g⁻¹. This amount is compared to tPAHs concentration in marine organisms from several locations around the world in Table III. According to the table, generally PAHs concentration in marine organisms from different locations shows that concentration of this compound was higher than other marine organisms. Mean concentration of 3rings, 4rings, and 5+6rings PAHs in clams from Bushehr intertidal coasts was within the range of tPAHs concentration of B.helblingii was higher than Crassostrea virginica (Mobile Bay), Mytilus galloprovincialis (Mediterranean Sea), Saccostrea cucullata (Oman) and Circentia callipyga (Qatar) in Persian Gulf. On the other hand, it was lower than Ostera edulis (coastal waters of the Lebanon) and Crassostrea sp. (Bay of Biscay). Thus tPAHs concentration in B.helblingii was within the range of tPAHs concentrations in other oysters in other studies. Comparison of Benzo(a)pyrene concentration in B.helblingii with other organisms in Table III showed that concentration of this compound was higher than other marine organisms. Mean concentration of 3rings, 4rings, and 5+6rings PAHs in clams were 209.3, 172.9 and 30.5 ng g⁻¹ respectively (Fig. 5).

Comparison between B.helblingii and oysters from different locations of the world showed that tPAHs concentration in B.helblingii was higher than Crassostrea virginica (Mobile Bay), Mytilus galloprovincialis (Mediterranean Sea), Saccostrea cucullata (Oman) and Circentia callipyga (Qatar) in Persian Gulf. On the other hand, it was lower than Ostera edulis (coastal waters of the Lebanon) and Crassostrea sp. (Bay of Biscay). Thus tPAHs concentration in B.helblingii was within the range of tPAHs concentrations in other oysters in other studies. Comparison of Benzo(a)pyrene concentration in B.helblingii with other organisms in Table III showed that concentration of this compound was higher than other marine organisms. Mean concentration of 3rings, 4rings, and 5+6rings PAHs in clams were 209.3, 172.9 and 30.5 ng g⁻¹ respectively (Fig. 5). The study of composition pattern of PAHs in B.helblingii showed that based on the number of rings in the molecule, the order of PAHs compounds in clams from Bushehr intertidal coasts is as: 3rings PAHs>4rings PAHs>5+6 rings PAHs. One reason for abundance of 3rings PAHs in B.helblingii could be related to their uptake pathway. The fewer rings number in PAHs molecule causes the more solubility of the compound in seawater. Dissolved compound in seawater could easily be taken up through gill membrane. Bummard et al believe that 3 and 4 rings PAHs are more concentrated rather than 5 and 6 rings PAHs in organisms [3].

The order of PAHs compounds in B.helblingii is compared to some previously studied aquatic organisms in Table IV. The oysters Crassostrea virginica (in Mexico) and Mytilus chilensis (in Chile) have shown the same PAHs pattern as B.helblingii, whereas in Mytilus galloprovincialis from the Mediterranean sea, 4 rings PAHs have been more concentrated than 3 rings. Different order of PAHs in this case seems to be related to different in PAHs sources. Unlike other samples, the clams from the station Helyleh were found to contain high concentrations of 4rings PAHs. Dickhut et al suggested that even PAHs with the same molecular weight have different dynamic transport in different environmental condition [7]. It means that rather than PAHs concentration, many other factors are involved in PAHs bioavailability for clams.

Table III. Concentration of PAHs in various marine organisms from different location of the world.

<table>
<thead>
<tr>
<th>Studied species</th>
<th>tPAHs</th>
<th>Benzo(a)pyrene</th>
<th>Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epinephelus coioides</td>
<td>65.66</td>
<td>-</td>
<td>Qatar</td>
<td>[17]</td>
</tr>
<tr>
<td>Epinephelus coioides</td>
<td>23.9</td>
<td>-</td>
<td>Bahrain</td>
<td>[17]</td>
</tr>
<tr>
<td>Lethrinus nebulosus</td>
<td>43</td>
<td>-</td>
<td>Qatar</td>
<td>[17]</td>
</tr>
<tr>
<td>Lethrinus nebulosus</td>
<td>25</td>
<td>-</td>
<td>UAE</td>
<td>[17]</td>
</tr>
<tr>
<td>Mutilus barbatus</td>
<td>24.43</td>
<td>0.35</td>
<td>Mediterranean</td>
<td>[3]</td>
</tr>
<tr>
<td>Serranus Scriba</td>
<td>58.11</td>
<td>0.53</td>
<td>Mediterranean</td>
<td>[3]</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myid euphausiids</td>
<td>364.5</td>
<td>11.86</td>
<td>Mediterranean</td>
<td>[3]</td>
</tr>
<tr>
<td>Bivalve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crassostrea sp</td>
<td>524</td>
<td>-</td>
<td>Bay of Biscay</td>
<td>[5]</td>
</tr>
<tr>
<td>Ostera edulis</td>
<td>125</td>
<td>2.27</td>
<td>Lebanon</td>
<td>[10]</td>
</tr>
<tr>
<td>Crassostrea virginia</td>
<td>312</td>
<td>-</td>
<td>Mobile Bay</td>
<td>[15]</td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>98.80</td>
<td>1.5</td>
<td>Mediterranean</td>
<td>[4]</td>
</tr>
<tr>
<td>Saccostrea cucullata</td>
<td>66</td>
<td>-</td>
<td>Oman</td>
<td>[17]</td>
</tr>
<tr>
<td>Circentia callipyga</td>
<td>105</td>
<td>-</td>
<td>Qatar</td>
<td>[17]</td>
</tr>
<tr>
<td>Barbatia helblingii</td>
<td>421.86</td>
<td>14.94</td>
<td>Bushehr coast</td>
<td>This study</td>
</tr>
</tbody>
</table>

UAE: United Arab Emirates. -Not reported.

Fig. 5. Concentration of 3, 4 and 5+6 rings PAHs in soft tissue of B.helblingii in studied station. 3 rings PAHs are sum of acenaphtylene, acenaphthene, fluorene, phenanthrene and anthracene, 4 rings PAHs include: fluoranthene, pyrene, benzo[a]anthracene and chrysene, 5+6 rings PAHs consist of: benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene.

TABLE IV: COMPOSITION PATTERN OF PAHS IN VARIOUS SELECTED MARINE ORGANISMS BASED ON NUMBER OF RINGS

<table>
<thead>
<tr>
<th>species</th>
<th>pattern</th>
<th>Location</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrobir scomberus</td>
<td>3>4>5,6</td>
<td>Adriatic sea, Italy</td>
<td>[16]</td>
</tr>
<tr>
<td>Micromesistias poutassou</td>
<td>3>4>5,6</td>
<td>Adriatic sea, Italy</td>
<td>[16]</td>
</tr>
<tr>
<td>Merlucius merluccius</td>
<td>4>3>5,6</td>
<td>Adriatic sea, Italy</td>
<td>[16]</td>
</tr>
<tr>
<td>Mullus barbatus</td>
<td>4>3>5,6</td>
<td>Adriatic sea, Italy</td>
<td>[16]</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephrops norvegicus</td>
<td>3>4>5,6</td>
<td>Adriatic sea, Italy</td>
<td>[16]</td>
</tr>
<tr>
<td>Bivalve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>4>3>5,6</td>
<td>Mediterranean sea</td>
<td>[3]</td>
</tr>
<tr>
<td>Mytilus Chilensis</td>
<td>3>4>5,6</td>
<td>Corral Bay, Chile</td>
<td>[9]</td>
</tr>
<tr>
<td>Crassostrea Virginica</td>
<td>3>4>5,6</td>
<td>Terminos Lagoon, Mexico</td>
<td>[2]</td>
</tr>
<tr>
<td>Barbatia helblingii</td>
<td>3>4>5,6</td>
<td>Bushehr coast</td>
<td>This study</td>
</tr>
</tbody>
</table>

*Number of benzene rings

IV. CONCLUSIONS

Although Bushehr coastal water is the main route for oil carrying tankers, and many activities related to oil export is performed there this study showed that generally PAHs concentration in the Ark clams from Bushehr is not higher than available standards, while the PAHs concentrations in the clams located near the ports or city were higher than other locations. Compared to fish and oyster species studied from other parts of the world, PAHs contamination in ark clam from Bushehr, Iran was moderately high. The PAHs contamination in station Helyleh mainly originates from petrogenic sources, while the major part of PAHs in the other stations originated from both; pyrolytic and petrogenic sources. According to the results of the present study PAHs contamination and bioavailability in Bushehr coastal waters is to be noticed and regular monitoring is recommended.

REFERENCES

398